
  

Abstract—We study subjects with pharmacologically 

intractable epilepsy who undergo semi-chronic implantation of 

electrodes for clinical purposes. We record physiological 

activity from tens to more than one hundred electrodes 

implanted in different parts of neocortex. These recordings 

provide higher spatial and temporal resolution than non-

invasive measures of human brain activity. Here we discuss our 

efforts to develop hardware and algorithms to interact with the 

human brain by decoding ensemble activity in single trials. We 

focus our discussion on decoding visual information during a 

variety of visual object recognition tasks but the same 

technologies and algorithms can also be directly applied to 

other cognitive phenomena.  

I. INTRODUCTION 

HERE has been significant progress over the last several 

years in the possibilities of interacting with human 

cortex through invasive methods. Here we describe our 

efforts to record and decode ensemble activity from a variety 

of different electrodes implanted in the human brain for 

clinical purposes. Subjects are patients who suffer from 

pharmacologically intractable epilepsy. In order to localize 

the seizure focus for potential resection, subjects are 

implanted with electrodes in a semi-chronic fashion for 7-10 

days. The algorithms described here are based on 

electrophysiological recordings performed during this period 

(for reviews, see [3-5]). 

 Recording and decoding activity from the human brain at 

high spatial and temporal resolution has potential for a 

significant impact at different levels: (i) it can help us 

transform our understanding of the function of different 

human brain areas; (ii) it can significantly enhance clinical 

approaches that require direct interaction with the human 

brain including the burgeoning field of brain prosthetic 

applications and (iii) it offers the possibility of examining 

future technologies that may depend on brain-computer 

interfaces.  

 As a proof-of-principle, here we focus on decoding visual 

information in a variety of tasks that involve discriminating 

among different types of objects (Methods). The visual 

system offers a number of important features as a test bed to 

examine and characterize our methodology. First, we can 

rigorously, precisely and systematically control the input. 

Second, humans are quite proficient at visual discrimination 
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tasks. Finally, we can compare and relate our findings to a 

large body of literature describing visual responses 

throughout the primate visual cortex (e.g. [1, 4, 6-9]). 

 This paper is organized as follows. First, we introduce the 

methodology for recording activity from the human brain 

and the basic algorithms for decoding brain activity. Second, 

we provide examples describing decoding performance, 

stationarity and other relevant metrics. Finally, we provide a 

summary and a look ahead.    

II. METHODS 

A. Recording invasive data from the human brain 

We record intracranial neurophysiological signals from 

the human brain. Subjects are patients that undergo surgical 

implantation of unilateral or bilateral depth electrodes and/or 

cortical surface electrodes for planning of resective surgery 

to treat epilepsy at Children’s Hospital Harvard Medical 

School (CH) and Brigham and Women’s Hospital (BW). 

Subjects stay in the hospital, with the electrodes implanted, 

for 7-10 days, until enough seizure events are accumulated 

to guide surgery [3, 10, 11]. Patient participation is 

voluntary; a consent form is signed after making sure that 

the subjects understand the procedures. The research efforts 

are based on the existing clinical recording procedures. All 

recordings are overseen by the attending physician according 

to the protocols currently in place and approved by the 

Institutional Review Boards at CH and BW. Given that these 

recordings are performed in epileptic subjects, it is 

interesting to consider the extent to which the results provide 

general insights about normal cognitive function. We make 

several remarks on this question: (1) Many electrodes 

(typically 40-140) are used because the epileptogenic 

regions are not known. Consequently, most of the electrodes 

(>90%) are located in non-epileptogenic areas (centimeters 

away or in the opposite hemisphere). (2) After the 

epileptogenic focus is found, we can compare the 

epileptogenic and non-epileptogenic electrodes. (3) 

Although some cognitive functions might be different in 

some epileptic patients, the consensus is that visual 

cognition is normal in most cases. (4) The study of epilepsy 

has provided key insights into brain function.  

We record three different types of signals: multi-unit 

spiking activity (MUA) through microwires [4], local field 

potentials (LFPs) through microwires [12] and intracranial 

field potentials (IFPs) recorded through grid and strip 

electrodes [2]. We record spike activity through Ad-tech 

microwires (Pt/Ir, 40 Jm diameter, ~1 M� impedance, 

Racine, WI) to monitor electrical activity at high spatial and 
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temporal resolution (~100 Om and <1 ms). Nine microwires 

(8 recording microwires + local reference) are inserted 

through the lumen of the main electrode. The signals are 

amplified and split into two streams: (i) We high-pass filter 

the signal (>600 Hz) to obtain MUA; (ii) We low-pass filter 

the signal (<100 Hz) to obtain local field potentials. We 

routinely compare MUA against single-unit activity (SUA) 

by using a spike-sorting algorithm. We use two different 

types of “macro/micro” electrodes from Ad-Tech (Racine, 

WI) to record local field potentials. In the depth-electrode 

cases, we use the electrodes described above to record both 

action potentials and LFPs. In non-depth cases, we use 

microwires attached to the standard clinical electrodes 

described below. These microwires enable us to record LFPs 

but not spike data. We record LFPs from tens to hundreds of 

microwires, depending on the total number of electrodes. 

We use grid and strip electrode to record intracranial field 

potentials (IFP) using Ad-Tech epilepsy electrodes (2 mm 

diameter, 1 cm separation, Pt) and amplified with a Bio-

Logic system (Knoxville, TN) with 500 Hz sampling rate, a 

bandpass between 0.1-100 Hz and a notch at 60 Hz. We use 

a non-invasive infrared scanning system to monitor eye 

movements with a spatial resolution of ~1 deg and a 

temporal scanning frequency of 75 Hz (ISCAN DTL-300, 

Woburn, MA). We monitor eye movements continuously 

during the experiments.  

The number and location of the electrodes are decided 

based on pre-surgical clinical evaluation. In the depth 

electrode cases, the number of electrodes is typically 

between 6 and 10 (each electrode has 9 microwires). In the 

intracranial grid electrode cases, the number of electrodes is 

typically between 40 and 140. In the hybrid macro/micro 

electrodes, there are 9 microwires per grid electrode). To 

localize the electrodes on the brain surface, we integrate the 

anatomical information provided by Magnetic Resonance 

Imaging (MRI), the spatial information of the electrodes 

provided by Computer Tomography (CT) and high-

resolution images taken during electrode implantation. MR 

images are acquired before electrode implantation and CT 

images are acquired ~1 day after implantation. The 3D brain 

surface is reconstructed for each subject. An automatic 

parcellation is performed using Freesurfer [13]. A 

preliminary co-registration of CT and MRI is implemented 

using SPM [14]. Particular care must be taken in the co-

registration because the brain may swell, shifting the CT and 

MR images in non-trivial ways. We often find that the effect 

of swelling is particularly severe (up to ~2 mm) only for a 

few of the tens of electrodes implanted. Because of these 

potential distortions, the co-registration is fine-tuned using 

Freesurfer in a manually intensive effort. Finally, we record 

the Talairach coordinates of each electrode. Our analyses are 

restricted to the non-epileptogenic locations. 

 

B. Decoding information from electrophysiological 

recordings 

Consider a situation where images containing different 

objects were presented to the subject and we are interested in 

decoding the image content based on the ensemble activity. 

Let isr(T) denote the response of electrode i during time 

interval T in repetition r (i=1,..,Ne where Ne is the number of 

electrodes and r=1,…,R where R is the number of 

repetitions). We routinely compare different possible 

definitions for isr(T). How isr(T) defined is an interesting 

question in itself, i.e., what aspects of the neural signals 

carry relevant information about the stimulus. For simplicity, 

for LFPs and IFPs, here we define s as the signal power in 

the time interval T. We also separately examine the signal 

power in different frequency bands: 0.1-10 Hz, 10-20 Hz, 

21-55 Hz, 65-100 Hz. For the spike trains, we define s as the 

spike count within T. We perform spike sorting on the MUA 

recordings to obtain single-unit activity (SUA) and 

separately analyze the MUA and SUA responses. The 

analysis interval T=[tb;ta] (with respect to stimulus onset) 

provides information about the temporal evolution of the 

neurophysiological responses. We use a sliding window to 

characterize the responses as a function of time. s can also 

be a vector that includes a combination of multiple features 

extracted from the response waveform. We consider the 

following possible features: voltage at each time point; 

average voltage in a window of size �; projection onto the 

first principal components accounting for 80% of the 

variance, time of minimum voltage, time of maximum 

voltage, response amplitude; projection onto the first 

independent components, spike counts, interspike interval 

code. To shorten the discussion, we refer to s as the 

“response”.  

The same decoding algorithms are applied to LFPs, IFPs 

and spike trains. The ensemble analyses provide a natural 

way of thinking about the computations that neurons must 

solve. The ensemble analyses also allow a rigorous 

quantitative comparison among alternative neural codes. For 

a population of Ne electrodes, as a first approximation we 

assume independence and construct a population vector by 

concatenating the responses of each electrode: pr(T)=[ 1sr(T), 

2sr(T),…, Nesr(T)]. The dimensionality of this vector is Ne 

times the number of features per electrode. The input to the 

classifier consists of the vectors pr(T). As a control, we 

compare the results against the classification performance 

(CP) obtained during the baseline interval T=[-200;0] ms 

(before stimulus onset there should be no information about 

the objects due to the random order). Each trial is associated 

with a label (�r) that indicates the category or exemplar of 

the object shown in trial r.  In a binary classifier (e.g. when 

comparing one category versus the rest), �r takes the values 

“+1” or “-1”. In the case of multiclass classifiers, �r indicates 

the object category or exemplar. We randomly subsample 

the data to have the same number of repetitions with “+1” 

and “-1” labels. In an abuse of notation, we sometimes refer 

to “training a classifier with image X and evaluating the CP 

with image Y”. What we mean is: training the classifier with 

the neural ensemble responses obtained upon presenting 

image X and labels corresponding to image X and evaluating 

5905



the CP using the neural ensemble responses obtained upon 

presenting image Y and labels corresponding to image Y. A 

binary support vector machine (SVM) classifier is trained to 

discriminate between the “+1” and “-1” examples, that is, to 

quantify whether the neural ensemble activity can 

distinguish between the two conditions [1, 2, 15]. In the case 

of multiclass problems we use a one-versus-all approach. By 

default, we use a linear kernel where the classifier boundary 

can be expressed as w.p where the weights w are learnt 

during training. We routinely test SVMs with more complex 

kernel functions including polynomial kernels and radial 

basis function kernels and we also compare different 

statistical classifiers [16-18]. Importantly, the CP is always 

evaluated with independent data that are not seen by the 

classifier during training. We report the classification 

performance (CP) as the proportion of test trials that are 

correctly classified. CP ranges from 0 (no trial correctly 

labeled) to 1 (all trials correctly labeled). The chance level is 

1 divided by the number of possible trial labels (e.g. 0.5 in 

the case of binary classifiers). To evaluate the statistical 

significance of the CP values obtained, we define a null 

hypothesis where we randomly shuffle the trial labels [19]. 

This procedure is repeated 10000 times and we compute the 

p value by comparing the actual CP against the distribution 

of CP values based on this null hypothesis.  

 

III. RESULTS 

A. Decoding performance 

We compared different machine learning algorithms to 

decode visual information in single trials from an 

experiment in which subjects had to categorize images from 

5 different natural categories (Fig. 1). Overall, the results 

show concordance across different machine learning 

algorithms, highlighting the high information content in the 

recordings. We built a pseudopopulation concatenating 

recordings in different patients to extrapolate to the 

performance that one might expect to obtain in large-scale 

recordings across multiple electrodes (Fig. 2). This 

extrapolation revealed that even from coarse intracranial 

field potential recordings, we can achieve significant 

classification performance levels in single trials in complex 

object categorization both for binary classification (Fig. 2A) 

as well as multiclass classification (Fig. 2B). 

 

B. Tolerance to object transformations 

A key challenge in decoding approaches involves not only 

being able to extract information but also assessing how 

tolerant the decoding procedure is to different sources of 

variation. In the particular context of visual recognition, it is 

not sufficient to show selectivity to object exemplars or 

object categories; it is critical to consider how well the 

algorithms extrapolate across different transformations in the 

image. We have shown that the single trial decoding 

procedure illustrated here can extrapolate across 

transformations in object scale and rotation [2], image clutter 

[15] and object occlusion [20]. 

C. Stationarity of the responses 

Another important aspect of decoding information from 

human the human brain concerns the long-term stability of 

the recordings. In Fig. 3A we show the responses of an 

example electrode across sessions, illustrating the degree of 

Fig 1. Comparison among different statistical classifiers and 

selectivity criteria. Comparison of classification performance levels 

obtained using different statistical classifiers for individual electrodes 

(based on the data in [2]. Throughout the text, we report the 

performance of a Support Vector Machine (SVM) classifier with a 

linear kernel. Here we show a direct comparison between the linear 

SVM (x-axis) and an SVM classifier with a Gaussian kernel (red) or a 

nearest neighbor classifier (blue). The diagonal dashed line would 

correspond to identical performance across classifiers. We compare 

the values only for those electrodes and conditions that yielded a 

performance above 3 standard deviations of the null hypothesis 
defined by shuffling the object labels.  

 

Fig 2. Pseudo-population analysis showing classification 

performance using an ensemble of 11 electrodes. For each subject, 

one electrode was chosen based on the rank of rv values. rv is the 

ratio of the variance across categories divided by the variance within 

categories [1]. rv was computed using only the training data. A. 

Binary classification performance. The colors correspond to different 

object categories. The horizontal dashed lines denote the chance 

performance value of 0.5 and the significance threshold value. Next to 

the chance level line we show the range of classification performance 

values obtained after randomly shuffling the object category labels 

(100 iterations). B. Multiclass classification performance. Here the 

chance level is 0.2 (5 object categories). The data for this figure are 
taken from ref. [2]. 
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stationarity in the visually selective responses over scales of 

>24 hrs. We compared decoding performance within 

sessions to decoding performance across sessions and 

observed that there was a significant correlation. These 

results emphasize that an algorithm to extract information 

from neurophysiological recordings can show a strong 

degree of stationarity. 

IV. SUMMARY 

Recent developments in hardware, algorithms and 

computational resources make it possible to decode 

information from the activity of ensembles in single trials 

and even in real time. Here we provide proof-of-principle 

evidence for the possibility of decoding information 

focusing on the visual system and describing the 

performance of machine learning algorithms, their tolerance 

to stimulus transformations and their temporal stability. 

Neurotechnological advances make it possible to interact 

with the human brain at unprecedented spatial and temporal 

resolution. Invasive recordings from the human brain offer 

many clinical, scientific and engineering opportunities. 
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Fig 3. Stationarity across recording sessions. On the left we show 

an example intracranial field potential recording from two different 

sessions separated by more than 24 hours. Each color represents the 

average IFP (error bars denote SEM) across 5 different exemplar 

objects belonging to a given object category (each color represents a 

separate object category). The gray rectangle denotes the image 

presentation interval. The similarity in the responses across sessions 

highlights the stability of the recordings over time. On the right, we 

compare the output of the decoder within session (x-axis) to the 

output of the decoder across sessions (y-axis). Each color represents a 

different object category. Data taken from [2]. 
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