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Abstract— We have developed a multiscale approach for the
estimation of neuronal network coordination in the epileptic
brain, from continuous (long-term) non-invasive electroen-
cephalograms (EEG). The proposed approach specifically as-
sesses the effect of large-scale network behavior on local net-
work coordination, at individual dominant frequencies (modes)
of the EEG spectrum. For this purpose a set of conditional
information parameters is proposed to explicitly quantify the
effect of global network correlation in the brain on pairwise
(local) mutual information, via conditioning. These parameters
are shown to be modulated in a frequency-specific manner at
baseline, as well as during seizure evolution.

I. INTRODUCTION

Mechanisms of modulation of local brain networks at the

meso-scale by neural activity at the macro-scale are only par-

tially understood. Improved knowledge of these mechanisms

is necessary in order to gain insights into the interaction

of neural dynamics at different spatial scales, and may also

provide very important insights into the neurophysiological

correlates of neurological disorders, such as epilepsy, a

common disorder that significantly affects neural dynamics.

To date, it remains unclear whether seizure evolution is facil-

itated by a global, abnormal state of network coordination in

the pre-ictal interval, or is triggered by local seizure-related

activity originating in the epileptogenic region.

In order to quantify multiscale network interactions from

inherently variable electroencephalograms (EEGs), an ap-

propriate, robust to this variability mathematical framework

is necessary. Information theory is such a framework, and

enables the estimation of local network interactions and

their dependence on large-scale dynamic neural states or

network coordinations, by conditioning mutual information

on spatially global parameters [1][11]. Previous studies have

developed and applied information theoretic measures to

electrophysiological signals, e.g., [14][10]. A few studies

have also been specific to epilepsy, e.g., [9] applied trans-

fer entropy for epileptic source localization, [5] proposed

permutation conditional mutual information as a measure

of directional coupling, and [8] estimated modulations of

relative entropy in the time-frequency domain during the ictal

interval. However, none of the studies addresses the problem

of multiscale spatial network interactions, nor do they esti-

mate the effects of global neurodynamic network changes on
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local networks. Finally, network and/or information theoretic

studies involving EEGs typically examine the broadband

spectrum of these signals either bounded by the sampling

frequency or often at frequencies ≤80 Hz. However, it

may be more meaningful to examine network coordination

measures at the dominant frequencies (or modes) of the

EEG. The structural anisotropy of the brain is likely to

affect individual frequencies more specifically than entire

bands, and thus analysis at the mode level may provide more

specific information on directional EEG modulations.

We developed conditional information measures for quan-

tifying the dependence of pairwise (local) network coordi-

nation on large-scale and global dynamic synchrony across

the brain. These measures were estimated dynamically, for

each dominant frequency (mode) of the EEG in the range

1-250 Hz. Modes were estimated using an Empirical Mode

Decomposition (EMD) approach, modified to improve the

data signal-to-noise ratio (SNR) [4][13]. Mutual information

measures were conditioned i) on global or hemisphere-

specific mode time-varying cross-correlation and ii) cross-

frequency correlations, i.e., mutual information was condi-

tioned on mean global network correlation either at the same

frequency or at different modal frequencies, respectively.

Cross-frequency coupling in the brain has been previously

reported, e.g., modulation of high-frequencies (in the gamma

band) by lower frequencies (≤20 Hz) has been reported, even

between distant brain regions [2][7][3], as well as during

motor behaviors [6]. This analysis was applied to continuous

non-invasive recordings from 5 patients with partial focal

seizures originating in the temporal lobes.

II. MATERIALS AND METHODS

The proposed methodology consists of: 1) segmentation of

continuous non-invasive multi-channel EEGs, collected over

a period of multiple days, 2) individual signal decomposition

into components with significant amplitude contributions

(modes) and distinct characteristic frequencies, 3) estimation

of conditional information theoretic parameters, for each

segment and dominant component, and thus at each dominant

frequency of each EEG signal, to obtain a time-frequency in-

formation spatial map of dynamic local network interactions.

A. Data

Continuous (long-term) EEG data were recorded at Beth

Israel Deaconess Medical Center, Boston MA, in the Clinical

Neurophysiology Laboratory of the Comprehensive Epilepsy

Center. All data were part of inpatient, clinical electrophysi-

ology studies for patient evaluation and monitoring, typically

spanning several days. Data were recorded with a standard
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TABLE I

PATIENT CLINICAL DEMOGRAPHICS.

Patient # Age (yrs) Etiology Seizure focus # Recording hrs # Seizures

1 47 Cryptogenic L temporal 63.5 3

2 27 Head injury L temporal 193.5 7

3 24 Cryptogenic L/R/simult-bilat. temporal 40 4

4 23 Brain malformation L temporal 48 1

5 27 Cryptogenic R/L temporal 137.5 6

international 10-20 EEG system and a referential montage,

and were sampled at 500 Hz. EEG data are typically con-

taminated by both noise and artifacts. Power-line noise was

attenuated with a stopband filterbank, centered at the 60 Hz

harmonics of the noise, in the range 60-250 Hz, with a 1

Hz bandwidth for center frequencies ≤ 150 and a 2 Hz

bandwidth for center frequencies > 150 Hz. Second order

elliptical filters (10 dB attenuation in the stopband, 0.5 dB

ripple in the passband) were used. Signals were filtered in

both forward and reverse directions to eliminate potential

phase distortions due to the non-linear phase of the filter.

Artifacts associated with eye blinking and muscle movement

were suppressed using a stopband-type matched filter [12].

In addition, continuous recordings typically include segments

where patients are disconnected from the recording system.

These intervals were removed from the data prior to the anal-

ysis. Finally, a board-certified neurologist (B.S.C.) identified

all ictal onset and offset times, according to standard clinical

methods of visual EEG interpretation. Table I summarizes

the patient demographics and data details.

B. Signal Decomposition and Mode Selection

EEG signals are non-stationary, with dynamically varying

frequency content and statistics. There are very few strictly

data-driven methods for decomposing non-stationary signals,

which make no a priori assumptions on the shape of the

unknown EEG signal components (referred to as modes). A

widely-used method is the Empirical Mode Decomposition

(EMD) [4], which recursively decomposes a non-stationary

signal into modes with significant amplitude contributions.

EMD involves fitting polynomials (splines) through local

extrema of a waveform to obtain signal envelopes, which

are averaged and subtracted from the data to obtain the

desired modes. Although a powerful method and currently

used in many signal processing applications, EMD does

not necessarily estimate an optimum set of modes. Thus,

additional criteria for mode selection need to be imposed,

depending on the application. Here we selected a subset of

modes estimated by EMD, based on the following criterion,

first developed in an unrelated to EEG study [13]. An EEG

signal xi(t) at electrode i may be decomposed into M modes

di,M, which are then superimposed to obtain the estimate

x̂i(t) = ∑
M
m=1 di,m(t). Note that although a signal may be

perfectly reconstructed from a large set of modes, in general

only a quasi-optimum subset of modes is selected and x̂(t) is

an estimate of the measurement x(t). Thus, for a true source

signal s(t), xi(t) and x̂i(t) are a measurement and an estimate

of this signal, respectively, modulated by the medium in the

direction i between source and electrode i, and corrupted by

direction-specific noise, i.e.,

xi(t) = s(t)+ εi(t) (1)

x̂i,M(t) = ŝM(t)+ wi,M(t)

where ŝi,M(k) is the estimate of the true signal s(t) , based

on M modes, and εi ∼ N(0,σ2
εi
) and wi,M ∼ N(0,σ2

wi,M
),

with σ2
wi,M

< σ2
εi

are the additive Gaussian noise in x(t) and

x̂(t), respectively, in the direction of electrode i. In order to

optimize a set of estimated modes to represent the true signal

rather than noise contributions, we require that the variance

of the estimated signal ŝ(t) is less than the variance of the

noise in the measured signal, i.e., σ2
ŝ ≤ σ2

εi
, When modes

are sequentially eliminated from a signal, the noise variance

progressively decreases, i.e., σεi
> σwi,m=1

> σwi,m=2
> · · · >

σwi,m=M
. However, this process may also eliminate significant

components, resulting in large signal reconstruction errors.

Thus, we need to bound the number of eliminated modes. In

a previous study [13], we defined a cost function as:

Rm−(ŝm− ,s) =
1

T

T

∑
k=1

(xi(t)− x̂i,m−(t))2 (1)
= (2)

=
1

T

T

∑
t=1

(s(t)− ŝm−(t)+ εi(t)−wi,m−(t))2 =

where (·)m− refers to a signal in which mode m has been

removed. When the reconstructed signal is the optimum

estimate of the s(t), then ŝM(t) ≈ s(t), and Rm− becomes

Rm−,optim(ŝm− ,s) ≈
1

T

T

∑
t=1

(εi(t)−wi,m−(t))2 = (3)

1

T

T

∑
t=1

ε2
i (t)+

1

T

T

∑
t=1

wi,m−(t)2 −
2

T

T

∑
t=1

εi(t)wi,m−(t) =

= σ2
εi

+ σ2
w

i,m−
−2Cov(εi,wi,m−)

which ensures the desired σ2
ŝ ≤ σ2

εi
(assuming wi,m− and

εi are positively correlated), with equality when εi(t) or

wi,m−(t) is zero, i.e., a noiseless measurement x(k) = s(t)
or noiseless estimate x̂(t) = ŝm−(t), and asymptotic equality

when T → ∞. The proposed approach has the advantage that

it does not require detailed estimation of any thresholds for

mode selection, although it may result in a quasi-optimum

set of modes. Setting the variance of the mode-reduced signal

equal to the cost function ensures that mode-reduced EEGs

will have higher SNR than the raw signals. Each EEG signal

was segmented into 6s intervals, empirically estimated as
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an adequate data window that captures the dynamic (and

statistical) variation of the EEG. Modes, and subsequently

information parameters, were estimated at each interval, and

thus at each characteristic (dominant) frequency.

C. Conditional Information Measures

Conditional mutual information of two random variables

Yi and Yj given a third random variable Z is defined as [1]:

I(Yi,Yj|Z) = ∑
yi,y j ,z

p(yi,y j,z) log
p(Yi,Yj|Z)

p(Yi|Z)p(Yj|Z)
(4)

where p(·) denotes the probability mass function. We can

think of (Yi,Yj) as random variables describing pairs of

EEGs, measuring signal activity in the region covered by

electrodes i and j, and Z as a time-varying process that

may influence this pairwise interaction. For example, [14]

estimated the information transfer between Yi(t) and Yj(t)
at a future time interval, i.e., Yj(t + ∆t), given the present,

i.e., Z = Yj(t). Here we are interested in the relationship

between neural activity at different spatial scales, and thus Z

represents a global network coordination ’state’ of the brain.

Furthermore, I is estimated at individual modal frequencies,

i.e., we have I(Yi,m( fm,t),Yj,m( fm,t)|Z( fl ,t)), where l = m

when assessing these effects for the same mode as that of

individual EEGs, and l 6= m when assessing cross-frequency

effects. We, therefore, defined a set of Zs as follows:

Z1( fm,t) =
1

N

N

∑
i, j=1,i6= j

CYi,Yj
( fm,t) (5)

Z2( fl 6=m,t) =
1

N

N

∑
i, j=1,i6= j

CYi,Yj
( fl 6=m,t) (6)

Z1 is the mean global cross-correlation between all EEGs

(excluding autocorrelations), at mode m, Z2 is the cor-

responding correlation at mode l 6= m, when the mutual

information of Yi and Yj are calculated at mode m.

III. RESULTS

We first examined multi-modal mutual information (MI)

and conditional MI at baseline, separately for each channel.

Figure 1 shows these parameters over a baseline period of

100 min, for channel Fp1 and each dominant signal mode

averaged over all pairwise estimates of this channel with all

others. The top panel shows mean MI, and the bottom panel

shows MI conditioned on mean cross-correlation averaged

across the entire EEG array.

At baseline, MI between EEGs was highest at the lowest

frequencies (≤ 2 Hz), with a quasi-periodic variation from

low-to-high information, i.e., pairwise channel coordination,

of 2-5 min. Conditioning on the global correlation of the

brain, had a negligible effect on this parameter. Also, mutual

information decreased with frequency and was lowest for

modes with characteristic frequencies > 12 Hz.

We also examined the spatial variation (across channels)

of single-mode, mean MI. Figure 2 shows an example of

this variation at modal frequencies f=1,5,13 Hz. Although

the large-scale EEG correlation over the entire brain did
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Fig. 1. Mean mutual (top) and conditional mutual information (bottom)
between channel Fp1 and all others, at each dominant mode of the baseline
EEG: lowest frequency mode (1 Hz) (red), modes in the range 3 < f < 8
Hz (green), and modes f > 12 Hz (black).

not appear to affect local (pairwise) correlations between

channels, as shown in Figure 1, we identified baseline time

intervals of temporally locked variation of information across

many channels, both at very low frequencies (f=1 Hz) and

at mid-frequencies (f>12 Hz). Thus, at specific frequencies

and time points, individual networks may locally synchro-

nize, resulting combinatorially in a large-scale coordinated

network.

Fig. 2. Spatial variation of mean mutual information, at three dominant
EEG frequencies: f=1 Hz (left), f=5 Hz (middle), f=13 Hz (right).

We estimated information parameters for the entire length

of the EEGs, and specifically examined their variation prior

to during and following seizures. Figure 3 shows an example

of the variation of conditional MI at three time intervals:

baseline (100 min), 70 min prior to seizure onset, and 42 min

that included two seizures and short intervals between (<30

min) and after (<10 min). Very low-frequency (f=1-2 Hz)

mean MIT did not vary significantly prior to seizure onset (at

least at times ≥60 min prior to clinical onset) from baseline,

and only slightly increased during ictal and in short inter-

seizure intervals (<30 min). In contrast, conditional MI at

frequencies 8 < f < 12 Hz increased significantly during the
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Fig. 3. Conditional mutual information across modes at baseline (left), 70
min prior to any seizure onset and 42 min including 2 ictal and inter/post-
seizure intervals. Modes are marked as follows: f=1Hz (red), modes in the
range 3 < f < 8 Hz (green), and modes f > 12 Hz (black).

pre-ictal interval. Corresponding information at frequencies

>50 Hz, increased during ictal periods, as well as between

seizures occurring at short intervals from each other, indi-

cating a strong frequency-dependence of these parameters

and their potential modulation by seizure evolution. Finally,

the periodicity of the dynamics of information measures ob-

served at baseline was undetectable during seizure evolution.

We finally examined the effect of conditioning by cross-

frequency correlations. As previously mentioned, condition-

ing had a negligible effect on MI at baseline. In contrast,

approximately 20-45 min prior to seizure onset (depending

on the patient), mean conditional MI, cross-frequency condi-

tioned on mean (global) cross-correlation at low frequencies

(≤4 Hz) was higher then unconditioned information (Figure

4 middle panel). This was also the case during and following

seizures, though during the seizure, conditioning on large-

scale correlation resulted in relatively smaller increases in

pairwise information.

IV. DISCUSSION

We have proposed conditional mutual information pa-

rameters to quantify pairwise, local coordination between

EEGs at each dominant mode of these signals, and to assess

the effect of global neurodynamic synchronization on local

brain networks. In a preliminary study, we have applied this

analysis to continuous EEGs from 5 patients with multiple

seizures. At baseline, local network coordination, appeared

to be highest at very low frequencies, and independent of

global network correlations. In contrast, both in the pre-ictal

(20-45 min) and ictal intervals, very low-frequency, global

correlation appeared to facilitate the coordination of local

networks, given increased conditional mutual information in

these intervals, in comparison with unconditioned informa-

tion. Finally, during seizure evolution the frequency distri-

bution of these parameters varied significantly, from high

information at very low frequencies, to increased information

at frequencies 4 < f < 12 Hz in the pre-ictal interval, to

Fig. 4. Mutual information (red) and conditional mutual information
(black), averaged over all modes, at baseline (left), 25 min prior to seizure
onset and during a 40 min including 1 ictal event (at ∼ 22 min from the
beginning of the interval) and several min of the post-ictal interval.

maximum information at frequencies ≥50 Hz during the ictal

and post-ictal intervals. These are only preliminary, though

promising results based on a small number of patients,

which indicate frequency-specific and scale-specific network

modulations during seizure evolution. Evidently, a larger

seizure sample is necessary for validation.
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