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Abstract— Systems identification is being used increasingly
in quantitative neurophysiology, including the auditory, visual
and somatosensory systems. In this context, the Volterra-Wiener
approach, which is an important branch of nonlinear systems
identification, has met with considerable success in neuronal
systems modeling, as these systems often exhibit complex
nonlinear behavior. The Volterra-Wiener approach provides a
comprehensive data-driven framework that does not place any
a priori assumptions on the system structure. Therefore, it can
approximate highly complex nonlinear mappings provided that
experimental protocols are carefully designed in order to meet
the requirements of the corresponding estimation procedure.
In the present paper, we present a brief overview of Volterra-
Wiener models and methodologies for their estimation as they
relate to modeling neuronal systems. We also examine a specific
example from a mechanoreceptor system.

Index Terms: Systems neuroscience, nonlinear models, sys-
tems identification

I. INTRODUCTION

Quantitative neurophysiology, particularly sensory neuro-
physiology, has relied on the use of systems identification
techniques in order to examine and predict the function of
neurons in an accurate, quantitative manner [1]. The aim of
systems identification is to estimate mathematical descrip-
tions of a system (models) that are typically causal and
dynamic, whereby the output depends on present and past
input values, from experimental input/output observations.
The identification of nonlinear systems, which corresponds to
the class of systems that do not obey the principle of superpo-
sition, is of particular interest for physiological systems and
neuronal systems in particular, as these systems often exhibit
nonlinear characteristics. For instance, the neural encoding
of stimuli into action potentials is a strongly nonlinear
phenomenon, whereas interaction between neuronal stimuli
in the form of facilitation or inhibition is typical of systems
that do not obey the principle of superposition. As a simple
example that illustrates this last case, consider the case of
Fig. (1) where we show typical examples of the response of
a linear and a nonlinear system to a pair of impulsive stimuli.
In the case of a linear system, the principle of superposition
holds, whereas in the second case the response to the second
stimulus is influenced by the preceding stimulus and is either
increased (facilitation) or decreased (inhibition) compared to
when the stimuli are presented individually.

Applications of nonlinear systems identification to neu-
ronal systems have included the visual, auditory and so-
matosensory systems (for reviews see [1], [2], [3], [4], for
recent applications see [5], [6], [7], [8]), as well as memory
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Fig. 1. Schematic representation of the output of a linear and a nonlinear
system to two successive impulsive-like stimuli. When applied separately,
the two stimuli x1(t) and x2(t) elicit the output waveforms y1(t) and y2(t)
respectively (top panel). When the two stimuli are applied simultaneously,
the total output of a linear system is simply the addition between y1(t) and
y2(t) (middle panel). On the other hand, the output of a nonlinear system
is not equal to y1(t) + y2(t) (bottom panel).

function [9]. The Volterra-Wiener approach is a general
framework that represents the dynamic characteristics of
a nonlinear system in the form of a hierarchy of kernel
functions without any a priori assumptions about its structure
(i.e., it views the system as a ”black-box”). Therefore,
it provides a comprehensive quantitative description of its
function in a general context, as Volterra/Wiener models may
approximate any causal dynamic system with finite memory.
As a result, this approach has been used in systems neu-
roscience and with more efficient estimation methods being
developed, computational power increasing and experimental
procedures being refined, it presents an attractive alternative
for studying neural systems. Here, we present an overview of
Volterra-Wiener models as they relate to neuronal systems,
as well as recent results from an insect mechanoreceptor [6].

II. VOLTERRA-WIENER MODELS

Volterra models may be viewed as a generalization of
the convolution sum or as an extension of the multivariate
Taylor expansion to vectors of infinite dimension (in this
case, continuous time signals). They relate the input and the
output of a nonlinear causal system as follows [10]:

y(t) =

Q∑
q=0

∫ ∞
0

. . .

∫ ∞
0

kq(τ1, . . . , τq)

x(t− τ1) . . . x(t− τq)dτ1 . . . dτq

= k0 +

∫ ∞
0

k1(τ)x(t− τ)dτ+∫ ∞
0

∫ ∞
0

k2(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2 + . . . (1)
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where x(t) is the system input, y(t) is the system output
and kq denotes the q-th order Volterra kernel of the system.
The Volterra kernels describe the linear (q = 1) and nonlinear
(q > 1) dynamic effects of the input on the output. Specifi-
cally, the linear kernel k1(τ) operates on the system input in
a similar manner to the impulse response of a linear system,
quantifying the effect of past input values on the present
output value at t, while the nonlinear kernels quantify the
effect of q-th order products between past input values on
the output at present. For finite memory systems the integrals
in (1) are defined from 0 to M , where M is the system
memory. For instance, the operation of the first- and second-
order Volterra kernels is visualized in Fig. (2).

Fig. 2. Operational interpretation of the function of the first- and second-
order kernels in a Volterra model. Left panel: A typical second-order kernel.
Right panel: the value of k2 at (m∗1,m

∗
2) quantifies the effect of past input

values m∗1,m
∗
2 before the ”present” time lag t0 on the value of the output

y(t0). All these effects are integrated to yield the total second-order kernel
effect. The linear kernel (blue) operates in a similar manner to a linear
system impulse response, i.e. it weighs the effect of past input values on
the present output value.

In the context of a neurophysiological experiment, the
input x(t) is typically a neuronal stimulus, e.g. a sensory
stimulus, and the output y(t) is a measure of the resulting
response, such as action potential occurrences, spike counts,
membrane potential, local field potential or instantaneous
firing rate [1], depending on the type of the neuronal system
and the experimental setup. Depending on these, the input
and/or output may be graded or binary signals; therefore,
the formulation and/or estimation of the Volterra-Wiener
should be made accordingly. For example, in [?] the Volterra
model is formulated in a point-process context such that ker-
nels depend on the timing between binary events (Poisson-
Volterra model). An example of the Volterra formulation for
a mechanoreceptor system with graded input (displacement)
and binary output (action potential events) is given below
[6]. In discrete-time, the Volterra model may be written as
[10]:

y(n) = k0 +
∑
m

k1(m)x(n−m)+∑
m1

∑
m2

k2(m1,m2)x(n−m1)x(n−m2) (2)

The Wiener series is an alternative representation for
nonlinear systems that is related to the Volterra series
representation [11]. Wiener suggested orthogonalization of
the Volterra series by a Gram-Schmidt procedure, which

orthogonalizes the Volterra functionals of different orders for
a Gaussian White noise (GWN) input. The resulting Wiener
series take the form:

y(t) =

∞∑
n=0

Gn[hn;x(t
′), t′ ≤ t]

=

∞∑
q=0

[n/2]∑
m=0

(−1)nn!Pn

(n− 2m)!m!2m

∫ ∞
0

. . .

∫ ∞
0

hn(τ1, . . . , τn−2m, λ1, λ1, . . . , λm, λm)

x(t− τ1) . . . x(t− τn−2m)dτ1 . . . dτn−2mdλ1 . . . dλm (3)

where P is the power level of the GWN input signal and
hn is the n-th order Wiener kernel. Note that the Wiener
kernels are not equal to the Volterra kernels; whereas the
latter do not depend on the input power, the former do.

III. ESTIMATION OF VOLTERRA-WIENER MODELS

In order to estimate the Volterra kernels using input-
output measurements, Wiener suggested the use of Gaussian
White Noise (GWN) as an effective test stimulus [11].
GWN exhibits frequency content over the entire frequency
range, therefore it probes the enire dynamic range of any
system. Pseudorandom (quasi-white) stimuli have therefore
been widely used in quantitative neurophysiology in order
to achieve efficient estimation of nonlinear neuronal models
[2], [3], [1], [4].

Among the many methods that have been proposed for
Volterra-Wiener model identification [12], [10], one of the
first methods that found applicability in neuronal models
(e.g. in [13]) is the cross-correlation approach proposed in
[14]. According to this method, the Wiener kernels of a
system excited with GWN are obtained as expected values
of the output and the first and higher order cross-correlations
between the input and output signals, i.e.:

ĥ0 = E [y(t)]

ĥ1(τ) = (1/P )E [y(t)x(t− τ ]

ĥ2(τ1, τ2) = (1/2P 2)E [y2(t)x(t− τ1)x(t− τ2)] (4)

where y2(t) = y(t)−ĥ0−
∫∞
0
ĥ1(τ)x(t−τ)dτ corresponds

to the second-order residuals. This method requires long data
records in order to achieve good estimates and it is also
influenced by noise. Therefore, improvements such as the
fast orthogonal search algorithm [12] have also been used.

One of the major issues in nonlinear systems identification
is the number of required free parameters. For a Q-th order
system with a memory of M , the least squares formulation of
the Volterra series requires the estimation of QM parameters,
which becomes very large for high order systems with large
memory. One way to reduce this number is to express the
Volterra kernels in terms of the Laguerre discrete-time basis
as shown below for the first and second-order kernels:
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Fig. 3. Wiener-Bose model of a spider mechanoreceptor.

k1(m) =

L∑
j=0

cjbj(m)

k2(m1,m2) =

L∑
j1=0

L∑
j2=0

cj1j2bj2(m1)bj2(m2) (5)

In matrix form this representation can be written as:

y = Vc+ ε, (6)

where y is the vector of output observations, V is a matrix
containing the convolution of the input with the Laguerre
functions vj = x ∗ bj and higher-order products between
them vj1vj2 . . . vjQ and c is the vector of the unknown
expansion coefficients. The number of free parameters in
this formulation is LQ and, since typically L << M , it
is reduced considerably. The least-squares estimate of c is
given by [15]:

ĉLS = (VTV)−1VTy. (7)

One way to extract the most important components of the
Volterra kernels is to perform singular value decomposition
of the matrix consisting of the linear and nonlinear kernels
and selecting the singular vectors that correspond to the most
significant singular values [16]. These constitute a minimum
set of linear filters followed by a static nonlinearity (Wiener-
Bose model). In this way, one may obtain representations that
are possibly more amenable to physiological interpretation.
Results from this approach applied to a mechanoreceptor
system are presented in the next section.

IV. EXAMPLE: MECHANORECEPTOR SYSTEM

In order to illustrate some of the concepts outlined above,
we present an application of the Volterra-Wiener frame-
work to the study of a sensory (mechanoreceptor) system.
Specifically, we studied the encoding of mechanical dis-
placements into action potentials in two types of spider
mechanoreceptors by using a Wiener-Bose model, shown
in Fig. (3) and the Laguerre expansion of kernels [6]. The
stimulus was pseudorandom displacements (graded) whereas
the output was the recorded output potentials (binary). Since
the output is binary, the output of the static nonlinearity
f(u1, u2, ..., uM ), which maps the values of the convolutions
of the input with the linear filters to the occurrence of action
potentials, is compared to a threshold p.

The first and second order kernels, obtained by the La-
guerre expansion technique from the displacement/output

action potential data, are shown in Fig. (4). Singular value
decomposition of the matrix containing the first and second-
order kernels revealed three significant singular values in
this case and the corresponding singular vectors yielded the
impulse responses of the linear filters µ1, µ2andµ3, shown
in Fig. (4) in the time and frequency domains (termed the
principal dynamic modes of the system - PDMs). The first
(most significant) singular vector has a high-pass (differ-
entiating) characteristic, suggesting that its output depends
primarily on the displacement velocity and secondarily on
the displacement magnitude. The second filter has a band-
pass characteristic with a peak at around 180 Hz and a high-
frequency plateau, implying dependence on the magnitude of
displacement (position) in addition to the resonant behavior
around 180 Hz. The third filter has a low-pass characteristic
that implies dependence only on the integrated (cumulative)
displacement/position over a 6 ms time-window.

Fig. 4. First and second-order Volterra kernels of mechanoreceptor neuron

Fig. 5. Principal Dynamic Modes for one Type A and one Type B
mechanoreceptor neuron (time and frequency domain). The first, second
and third PDM exhibit high-pass, band-pass and low-pass characteristics
respectively.

The combinations of PDM output values that gave rise to
action potentials at the mechanoreceptor output are shown
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in the three-dimensional scatter plot of Fig. (6), where
the PDM output values that corresponded to action po-
tentials are shown in blue, while those that did not are
shown in red. The construction of the three-input static
nonlinear function f(u1, u2, ..., uM ) was obtained by three-
dimensional histogramming, yielding the probability of fir-
ing for the mechanoreceptor neuron. The one-dimensional
marginal probabilities p(u1), p(u2), p(u3) are shown in Fig.
(7) In general, these marginal projections are asymmetric
with respect to their arguments. The predictive capability of
these models were found to be very good, with most output
action potentials being predicted correctly both for training
and validation data. The total performance was assessed by
constructing ROC curves by varying the threshold p between
zero and one [6].

Fig. 6. Scatter plot of the PDM output values that correspond to action
potentials (blue) for a mechanoreceptor neuron.

Fig. 7. One-dimensional marginal probability of firing functions obtained
from the three-dimensional static nonlinearity f(u1, u2, u3).

V. DISCUSSION
Volterra-Wiener models have been used extensively in

physiological systems modeling, including several applica-
tions to neuronal systems. They provide a complete char-
acterization of the system of interest without placing any
a priori assumptions on system structure, i.e. they are data-
driven, and they can be used to approximate mappings of any
given complexity. As shown above, they can be expressed in
equivalent forms that are amenable to interpretation - it was
found that mechanoreceptors can encode several different
properties of a mechanical stimulus (velocity, position, cu-
mulative position). On the other hand, one should be careful
regarding the chosen estimation method, as the number
of free parameters may increase exponentially for high-
order systems, requiring very large amounts of experimental
data. Moreover, the accurate estimation of these models
requires rich, broadband stimuli that excite the system over a

wide range of frequencies. Therefore, particular care should
be taken in the experimental design. However, with the
increased computational power that is available and the
improved estimation and experimental methods, the Volterra-
Wiener approach provides a comprehensive framework in
order to study neuronal function, which is typically char-
acterized by complex and nonlinear behavior - particularly
in the central nervous system. Some recent applications of
the Volterra-Wiener theory have included the study of hip-
pocampal neurons [9], the study of nonlinear interactions in
the spectrotemporal receptive fields of the primary auditory
cortex [8] and the study of visual cell responses to natural
images [5].
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