
 
Abstract: Multielectrode neurophysiological recording 

and functional brain imaging produce massive quantities of 
data. Multivariate time series analysis provides the basic 
framework for analyzing the patterns of neural interactions 
in these data. Neural interactions are directional. Being able 
to assess the directionality of neuronal interactions is thus a 
highly desired capability for understanding the cooperative 
nature of neural computation. Research over the last few 
years has identified Granger causality as a promising 
technique to furnish this capability. In this paper, we first 
introduce the concept of Granger causality and then present 
results from the application of this technique to 
multichannel local field potential data from an awake-
behaving monkey. 
 

I. INTRODUCTION 
OGNITIVE functions are achieved through cooperative 
neural computation. Multielectrode recording and 

functional imaging afford us the opportunity to study 
brain mechanisms of cognition from a network 
perspective. Traditional multivariate time series analysis 
relies on cross-correlation and coherence to measure the 
interdependence between two signals. These measures are 
symmetric and do not yield directional information. Phase 
spectra may be used under very ideal conditions to infer 
directions of interaction. It is often the case that the 
relative phase between two signals is zero at the 
frequencies of interest [1]. Cross-correlation functions 
could be helpful if the peak occurs at a nonzero time lag. 
Similar to the phase spectra, this peak value often happens 
at a zero time lag, yielding no information regarding the 
direction of interaction between two signals. A different 
framework exists for addressing the question of causal 
influence and direction of information transmission. The 
basic idea can be traced back to Wiener [2]. He proposed 
that, for two simultaneously measured time series, one 
series can be called causal to the other if we can better 
predict the second series by incorporating past knowledge 
of the first one. This concept was later adopted and 
formalized by Granger [3] in the context of linear 
regression models of stochastic processes. In this paper 
we start by reviewing the basic mathematical formulation 
of Granger causality and then proceed to test this method 
using local field potential data recorded from V4 of a 
monkey trained to perform an auditory discrimination 
task.  
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II. METHODS 
Let p channels of neural recordings at time t be denoted 

by 1 2( , , , )T
t t t ptx x x=X L where T stands for matrix 

transposition. Assume that the data over an analysis 
window are described by a MultiVariate AutoRegressive 
(MVAR) model:  
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where tE  is a temporally uncorrelated residual error 

series with covariance matrix Σ , and kA  are p p×  
coefficient matrices which are obtained by solving the 
multivariate Yule-Walker equations (of size 2mp ) [5][6]. 
Here, repeated trials for the same experimental condition 
can be used as realizations of a locally stationary 
stochastic process. The order m of the MVAR model is 
determined by the Akaike Information Criterion (AIC) [7]. 
Once the model coefficients kA and Σ  are estimated, the 
spectral matrix can be evaluated as  
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where the asterisk denotes matrix transposition and 
complex conjugation, < • >  stands for ensemble average, 
and 2 1
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= ∑H A  is the transfer function. The 

power spectrum of channel l is given by ( )llS f  which is 
the l-th diagonal element of the spectral matrix ( )fS . The 
coherence spectrum between channel l and channel k is:  

 
1/2( ) | ( ) | /( ( ) ( ))lk lk ll kkC f S f S f S f= .       (3) 

The value of coherence can range from 1, indicating 
maximum linear interdependence between channel l and 
channel k at frequency f, down to 0, indicating no linear 
interdependence.  
The phase of the complex quantity ( )lkS f  plotted as a 
function of f gives the phase spectrum. Adaptive 
computation of the MVAR model with moving analysis 
windows can reveal temporal dynamics of neuronal 
interactions. 

Analyzing Coherent Brain Networks with Granger Causality 
Mingzhou Ding, Jue Mo, Charles E. Schroeder, and Xiaotong Wen 

C 

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 5916

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



To introduce Granger causality let us consider two 
simultaneously acquired time series: 

1 2 1 2, ,..., ,...; , ,..., ,...n nx x x y y y . Suppose that one 
would like to build a linear predictor of the current value 
of the x series from m previous values: 

1 1 2 2 ...n n n m n m nx a x a x a x ε− − −= + + + + . This is 
nothing but a single variable autoregressive model (setting 
p=1 in Eq. (1)). The variance of the error series nε  is a 
gauge of the prediction accuracy. Now consider a 
predictor of the current values of the x series by including 
both the previous values of the x series and the previous 
values of the y series, namely, 

1 1 2 2 1 1...n n n m n m nx b x b x b x c y− − − −= + + + + +

2 2 ...n m n m nc y c y η− −+ + + . The variance of the error 

series nη is a gauge of the prediction accuracy of the new 
expanded predictor. Based on Wiener’s idea [2], Granger 
formulated that if var( ) / var( )n nη ε  is less than one in 
some suitable statistical sense, meaning that the prediction 
of x is improved by incorporating past knowledge of the y 
series, then we say the y series has a causal influence on 
the x series [3]. The role of the x and y series can be 
reversed to address the influence from x to y. The spectral 
Granger causality was developed by Geweke [4]. It can be 
shown that for a bivariate autoregressive model the 
Granger causality spectrum from 2tx  to 1tx  can be 
computed as [6][8], 
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(4) 
Similarly, the Granger causality spectrum from 1tx  to 

2tx can be obtained by switching the indices 1 and 2 in Eq. 
(4).  
 

The variability of the spectral quantities derived from 
the MVAR model above can be assessed by a bootstrap 
resampling technique. It involves randomly sampling a 
pool of trials with replacement from the total ensemble, 
and then estimating the MVAR model for this pool. 
Repeating this process many times for different pools of 
the same size, we estimate the mean and standard 
deviation of any given spectral quantity over the whole 
collection of estimated bootstrap values. The standard 
deviation gives a measure of the variability of the 
estimator.  

To assess whether interdependence measures such as 
coherence and Granger causality spectra are significantly 
different from zero, we can apply a random permutation 
approach. Briefly, consider two channels of recordings 
with many repeated trials. We can reasonably assume that 
the data from different trials are independent of one 
another. Randomly pairing data for channel 1 from a 

certain trial with data for channel 2 from a different trial 
leads to the creation of a synthetic ensemble of trials for 
which there is no interdependence between the two 
channels based on construction. This procedure preserves 
the temporal structure within a channel. Performing such 
random pairing with many different permutations will 
result in a distribution of coherence or causality spectra 
corresponding to the null hypothesis (i.e. distribution 
under the condition of no statistical interdependence). 
Then the calculated value for a given statistic from the 
actual data is compared with this baseline null hypothesis 
distribution for the assessment of significance levels. 

III. APPLICATION TO NEURAL DATA 
 

Field oscillations in the alpha band (8 to 12 Hz) are 
prominent over human occipital-parietal cortex. More than 
80 years after the initial discovery, the physiological 
mechanisms of alpha oscillations remain not well 
understood. Prior to the 1970s, the thalamus was thought 
to be the pacemaker of cortical alpha [9]. More recent 
studies using lesion techniques have tested the role of 
infragranular layer pyramidal cells in alpha pacemaking in 
cortical slice preparations [10]. Here we demonstrate that 
Granger causality can be used in lieu of the lesion 
technique to identify the cortical pacemakers of alpha 
activity.  

 
Fig. 1. A: Schematic of the multi-electrode with 14 equally spaced 
(200µm) contacts. B: A short segment (200 ms) of LFPs showing 
alpha oscillations. C: Granger causality between alpha generators in 
infragranular layers (IG) and in supragranular layers (SG). D: Granger 
causality between alpha generators in infragranular (IG) layers and in 
granular layer (G). 
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Local field potential (LFP) were sampled (2 kHz) with a 
linear array electrode with 14 contacts spanning all six 
cortical layers in visual area V4 of a macaque monkey 
trained to perform an auditor discrimination task. The 
inter-contact spacing was 200 µm. To examine the laminar 
organization of alpha oscillations we followed a two-step 
analysis protocol. First, laminar generators of LFP 
oscillations at the alpha frequency are identified by 
calculating the current source density (CSD) using the 
phase realigned averaging technique (PRAT) [11]. 
Second, the patterns of interaction between different 
laminar alpha generators are identified using Granger 
causality. Figure 1A and 1B display the schematic of the 
linear multielectrode and 200 ms unfiltered single sweep 
LFPs. Oscillations around 10 Hz is apparent. Current 
source density reveals alpha current generators in granular 
(G), infragranular (IG) and supragranular (SG) layers. 
Applying Granger causality to these alpha current 
generators we show in Figures 1C and 1D that there are 
large IG SG and IG G causal influences in the alpha 
band whereas the SG IG and G IG causal influences 
are close to zero. This finding is consistent with the in 
vitro result mentioned earlier that alpha frequency 
pacemakers are located in deep layers. This finding also 
helps to validate Granger causality as a method to infer 
direction of synaptic transmission in neuronal circuits. 
 

IV. CONCLUSION 
In neuroscience, commonly used methods to study the 

effect of one neuronal ensemble on another include 
stimulation and lesion. In this paper we have described a 
third methodology called Granger causality. This method 
is statistical in nature, is data-driven, and does not require 
perturbing the nervous system. Our results demonstrate 
that Granger causality yield physiologically interpretable 
results and can complement the traditional stimulation 
and lesion techniques. With the advent of advanced 
recording technology, multivariate data are becoming 
commonplace, which promise unparalleled insights into 
how different areas of the brain work together to achieve 
thought and behavior, and how such coordinated brain 
activity breaks down in disease. While the accumulation 
of data continues at an astonishing rate, how to effectively 
analyze these data to extract information about the 
workings of the brain remains a key challenge. Granger 
causality is an important method to help meet the 
challenge. 
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