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Abstract— Infering causal relationships from observed time
series has attracted much recent attention. In cases of nonlinear
coupling, adequate inference is often hindered by the need
to specify coupling details that call for many parameters and
global minimization of nonconvex functions. In this paper we
use an example to investigate a new concept, termed here
running entropy mapping, whereby time series are mapped
onto other entropy related time sequences whose analysis via a
linear parametric time series methods, such as partial directed
coherence, is able to expose the presence of formerly linearly
undetectable causal relationships.

Keywords:Approximate Entropy, Sample Entropy, Granger
Causality, Partial Directed Coherence

I. INTRODUCTION

Specially in neuroscience [1], [2], [3], [4], [5], [6], [7], [8],

but also in other biomedical applications [9], [10], [11], much

recent attention has been paid to methods for infering the

relationship between observations that evolve in time. This

endeavour has become known as the study of ’connectivity’

and is now seen as a pre-requisite for elucidating the brain’s

inner workings. The reason behind this interest is furthered

by the fact that these techniques enable constructing plausible

causal explanations for the time evolution of observations in

connection to brain states while avoiding often invasive and

possibly harmful direct intervention procedures.

Many currently promising techniques somehow ultimately

rely explicitly or not on the idea of Granger causality [12].

The reason for this interest, in addition, is the possibility of

providing precise measures of information flow [13], [14]

which includes the interaction direction as opposed to mere

correlation based methods [15].

To date, possibly thanks to their well understood con-

vergence properties, the most sucessfull techniques employ

adequately fitted linear multivariate models to simultaneously

acquired time series data [16], [17]. It is noteworthy that such

techniques have even proved sucessful in detecting some

instances of nonlinear interactions given sufficiently high

model order and lengthy observations [18].

However, in some cases such as for quadratic coupling (see

Sec. III below), linear model approximations fail. Whereas

alternatives obviously exist, both nonparametric [19], [20],

[21], [22] and parametric [10], [23], they often require many
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observations for converging. In the parametric case, addi-

tional difficulties arise from reliance on ’ad hoc’ structural

assumptions and from the usually non convex nature of the

functionals employed to obtain parameter estimates.

In this paper, to capture the presence of nonlinear interac-

tions whose presence is linearly undetectable, we investigate

a new hybrid approach we term running entropy mapping.

The main idea is to compute a time dependent measure

of a time series’s complexity over a suitably long running

window. This produces an allied time series that portrays

how its complexity evolves in time. The next step consists

of comparing the resulting mapped time series among them-

selves via linear multivariate methods.

The rest of this paper is organized as follows: Sec. II

describes two entropy running measures and their computa-

tion and briefly recaps partial directed coherence (PDC) [3]

whose use is made in Sec. III to illustrate the effectiveness

of the proposal for a simple model. This is followed by a

brief discussion and conclusions in Sec. IV.

II. THE METHOD

There are two steps to the method: (a) entropy map-

ping and (b) linear analysis of the resulting mapped series.

Whereas many alternatives exist for the second step, here for

definiteness we employ partial directed coherence (PDC).

A. Running Entropy Mapping

Consider a time series xi(n) comprising N sequential ob-

servations. Associate it to another time series ξi(n) sequence

generated from a sliding window x(n−W +1), . . . ,x(n) and

constructed so as to reflect some measure of the original time

series complexity.

In this paper we examine two such measures: (a) Pincus’s

approximate entropy [24], [25], [26] and (b) Lake’s et al. [27]

bias corrected sample entropy which justifies the running

entropy mapping terminology adopted here.

In addition to the window length, W , the latter entropies

require defining an embedding dimension m and a radius r

and consist of counting the odds of sample m length packets

in the series that are close to each given such packet to within

a distance r.

Whereas the proposal of the latter filtering of xi(n) is a

quite general one, the choice of the latter entropy measures

is justified by their fast convergence in terms of number of

observed points as W << N and their reasonable reported

immunity to the presence of additive noise [28]. An added

advantage is their asymptotic gaussian behaviour consistent

with the statistical tests [29] adopted herein.
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The next step consists of applying causality analysis

relating mapped ξi(n) time series among themselves rather

than the original xi(n) series.

B. PDC Analysis

Partial directed coherence was introduced [3] as a means

of exposing linear Granger causal relationships in the fre-

quency domain. When relating K simultaneously observed

time series PDC is given by:

πi j( f ) =
Āi j( f )

√

K

∑
l=1

|Āl j( f )|2
. (1)

where

Āi j( f ) =











1−
p

∑
l=1

ai j(l)e
−j2π f l , if i = j

−
p

∑
l=1

ai j(l)e
−j2π f l , otherwise

(2)

for j =
√
−1 and where ai j(l) are the coefficients of an

adequately fit multivaritate autoregressive model which in

the present proposal relates the associated entropy time series

rather than the original observations.

III. SIMULATION RESULTS

To examine the proposed approach, consider the following

model describing a linear stochastically fed oscillator
{

x1(n) = 2Rcos(.2π)x1(n−1)−R2x1(n−2)+w1(n),

x2(n) =−.9x2(n−1)+βx2
1(n−1)+w2(n),

(3)

that is quadratically connected to a low pass system filter

whose connectivity strength is gauged through β . Both wi(n)
were taken as gaussian zero mean mutually uncorrelated

white driving processes. The simulations used a sharp reso-

nance, i.e. R = .99.
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Fig. 1. A realization of (a) x1(n) and (b) x2(n) from the model in Eq. 3
comprizing 1,500 time samples (R = .99 and β = .05).
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Fig. 2. The computed PDC, in standard form (see text), for the data in
Fig. 1 showing that the existing nonlinear influence from x1(n) to x2(n) is
not captured.

A sample run (1,500 data points) of such vector process

is shown on Fig. 1 whose model led to the PDC portrayed

in Fig. 2 where no causality can be detected at 5% as the

estimates are below the dashed line threshold [29]. In Fig.

2, the usual matrix convention [3] of portraying PDC is

adopted. The graphs along the main diagonal represent the

series power spectral (arbitrary unit log scale) whereas the

counter diagonal portrays PDCs, i.e. the spectral connectivity

representations where the bottom left graph corresponds to

the x1(n) → x2(n) connection and the upper right graph to

x2(n)→ x1(n). Similar conventions apply to all PDC graphs

used herein.

A. Approximate Entropy
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Fig. 3. Approximate running entropy series computed for the data in Fig.
1 using W = 150, m = 1 and r = .15.
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Fig. 4. PDC results for the traces in Fig. 3 in standard form as described in
the text showing correctly inferred directionality, i.e. PDC1→2 (left bottom
graph) is above the dashed threshold, whereas PDC2→1 is mostly below
threshold.

Reconstruction of the allied approximate entropy time

series [ξ a
1 (n) ξ a

2 (n)]
T

(using W = 150,r = 0.15, h = 1 and

m = 1) is shown on Fig. 3 and its associated computed PDC

on Fig. 4 where significant ξ a
1 (n)→ ξ a

2 (n) is present above

threshold and correctly infers interaction direction whereas

no significant interaction happens in the reverse direction.

TP FP TP FP

R = 0,99, h = 1 β = 0,05 β = 0,10

m = 2, W = 150, r = 0.10 82.69 24.32 98.64 82.45

m = 1, W = 150, r = 0.15 93.92 2.38 99.98 5.51

m = 2, W = 200, r = 0.10 95.88 45.05 99.87 87.59

m = 1, W = 200, r = 0.10 95.60 3.21 100.00 5.84

TABLE I

APPROXIMATE ENTROPY RESULTS FOR 10,000 TRIALS AS A FUNCTION

OF COUPLING STRENGTH (β ) AND SPACE RECONSTRUCTION

PARAMETERS. THE TP LABEL REFERS TO THE PERCENTAGE OF TIMES

ξ a
1 (n)→ ξ a

2 (n) IS CORRECTLY DETECTED WHILE THE FP LABEL REFERS

TO THE RATE OF REVERSE INCORRECTLY DETECTED CONNECTIONS

(ξ a
2 (n)→ ξ a

1 (n)).

To assess method robustness and its dependence on en-

tropy space parameters , 10,000 realizations of the process in

Eq. (3) were used in obtaining the values of Table I where the

crucial nature of reconstruction parameter choice becomes

apparent, the best results happen for m = 1, W = 150, h = 1

and r = 0.15 even for small β and are to within the expected

5% test significance.

B. Sample Entropy

Similar results are obtained using the sample entropy

(reconstructed [ξ s
1(n) ξ s

2(n)]
T

series on Fig. 5 for W = 150,

h = 1 and m = 1) and its allied PDC (Fig. 6) where again

connectivity is correctly inferred at 5% (see also Table II).
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Fig. 5. Running sample entropy reconstruction from the data in Fig. 1.
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Fig. 6. Standard form PDC (see text) between the traces in Fig. 5 show
correct directional connectivity inference.

TP FP TP FP

R = 0,99, h = 1 β = 0,05 β = 0,10

m = 2, W = 150, r = 0,10 94,67 5,05 99,99 3,37

m = 1, W = 150, r = 0,15 93,96 2,36 100,00 11,68

m = 2, W = 200, r = 0,10 98,68 9,39 99,97 6,84

m = 1, W = 200, r = 0,10 93,90 3,40 100,00 13,25

TABLE II

SAMPLE ENTROPY RESULTS FOR 10,000 TRIALS AS A FUNCTION OF

COUPLING STRENGTH (β ) AND SPACE RECONSTRUCTION PARAMETERS.

THE TP LABEL REFERS TO THE PERCENTAGE OF TIMES ξ s
1(n)→ ξ s

2(n) IS

CORRECTLY DETECTED WHILE REFERS TO THE RATE OF REVERSE

INCORRECTLY DETECTED CONNECTIONS (ξ s
2(n)→ ξ s

1(n)).
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IV. DISCUSSION AND FUTURE WORK

Though in many ways still preliminary, the present results

point to the potential of using suitable transformations of

time series to still infer causality by fitting linear models

between the resulting transformed series in those cases where

the causal coupling between the original time series is in

principle not even approximately detectable via linear vector

autoregressions.

The basic idea presented herein is that of using the fluc-

tuations in entropy measures to gauge how complexity flows

from one time series to another. The extensive simulations

portray how critical phase space reconstruction is for the

process to work properly thus giving rise to the new problem

of optimal (W , m, r) parameter choice in the present context.

As perhaps expected, sample entropy proves slightly su-

perior by generating a lower false positive rate.

It is interesting to note that testing many of the mapped

running entropy series resulted in the presence of significant

cointegration between traces which passed specific Granger

causality tests at rates comparable to the ones presented here.

The present study case points to the interest in studying

the present methodology further specially in cases of models

comprizing larger dimensions. Exploratory investigation of

further examples is under way. The study of alternative

running maps is also in progress.
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