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Abstract— Nowadays, data are recorded with increasing spa-
tial and temporal resolution. Commonly these data are analyzed
using univariate or bivariate approaches. Most of the analysis
techniques assume stationarity of the underlying dynamical
processes. Here, we present an approach that is capable of
analyzing multivariate data, the so-called renormalized partial
directed coherence. It utilizes the concept of Granger causality
and is applicable to non-stationary data. We discuss its abilities
and limitations, and demonstrate its usefulness in an application
to murine electroencephalography (EEG) data during sleep
transitions.

I. INTRODUCTION

In many fields of research data can be recorded with
high spatial as well as temporal resolution. This has elicited
studies applying network theory to such data sets, see e.g. [1].
Researchers approach these networks from two different
angles:
• The direct approach refers to the inference of network

topologies based on prior knowledge about their nodes
and interactions. This is for instance a standard ap-
proach for modeling traffic networks where the network
topology is known in advance.

• The inverse approach refers to the strategy of using
measured signals to infer the network structure.

The latter of the two is investigated here. Several ap-
proaches have been discussed. Usually bivariate analysis
techniques are thresholded to deduce the interaction struc-
ture. Whenever the threshold is crossed, an edge is assigned
between the corresponding nodes [1]. Different concepts
on the optimal selection of these thresholds are possible
such as keeping the number of edges in a network constant
for different recording conditions. Alternatively, thresholds
based on significance levels are conceivable.

Although these significance tests provide some insights,
they are potentially leading to false positive conclusions
about the true interaction structure which can be seen in a
three dimensional example when applying bivariate analysis
techniques such as correlation or coherence analysis. Con-
sider the network as illustrated in Fig. 1. Suppose that the
interaction is quantified by a bivariate correlation between
the nodes of the network. If the true correlation between
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Fig. 1. Networks of coupled oscillators. Dashed arrows indicate indirect
interactions.

nodes one and two and between two and three was 0.4
(solid lines in Fig. 1), than the true correlation between nodes
one and three would be 0.16 (dashed line in Fig. 1). This
correlation of 0.16 would, however, correspond to an indirect
interaction. In principle a sensible significance test should
indicate the presence of a significant correlation between all
nodes, which would be a false positive conclusion in the
sense that the correlation between nodes one and three would
indicate a spurious interaction. In a realistic scenario with
finite sample size, a statistical test might eventually result
in a nonsignificant value for the weakest connection. In the
above examples the connection between nodes one and three
of strength 0.16 would likely not be statistically significant;
thus a false positive conclusion would be prevented but only
because of a small sample size. In all scenarios there is no
direct connection between nodes one and three. In other
words, for finite sample sizes indirect interactions might
correctly be identified, i.e. assessed as non-significant but
only if they are rather weak. This decision about the presence
or absence of interactions that is just due to the sample size
is, of course, not desirable.

To overcome this limitation of bivariate approaches, mul-
tivariate analysis techniques with valid statistics that are able
to distinguish direct and indirect interactions are necessary.
There is indeed a variety of techniques available for this
purpose [2], [3], [4], [5].

Another important question is concerned with the direc-
tion of information transfer between the constituents of a
network. To this end, the concept of Granger-causality [6] is
often applied. Ganger based his concept of causality on the
idea of predictability. In other words, if including knowledge
of one process add to the prediction of the future of a given
process this one process is Granger causal for the given
process. Granger formulated his approach to causal inference
for multivariate systems. In other words, the predictability
needs to be improved but with respect to the condition that
this holds true in the presence of third processes.

Granger causality usually bases on vector-autoregressive
processes. Analysis techniques derived from this are for
instance directed transfer function [5], direct directed transfer
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function, partial directed coherence [7], Geweke’s measure
for Granger causality [8] as well as the recently introdcued
renormalized partial directed coherence [9]. We emphasize
here that [10] has shown that neither directed transfer func-
tion nor direct directed transfer function are measures for
Granger-causality.

Renormalized partial directed coherence as introduced
in [9] assumes stationarity of the processes. Especially in
applications this is often not a valid assumption. Particularly
in the neurosciences when for instance investigating brain
dynamics one is indeed interested in the changes of the
dynamics as well as the temporal evolution of interactions. A
technique that is capable of inferring network structure in a
time-resolved manner is needed here. In this manuscript we
suggest an extension of renormalized partial directed coher-
ence that enables a time-resolved estimation of multivariate
Granger causal interactions between the constituents of a
network.

II. AUTOREGRESSIVE PROCESSES AND
RENORMALIZED PARTIAL DIRECTED

COHERENCE

In the following, the concepts of Granger causality and
partial directed coherence (PDC) are briefly introduced and
the extension to renormalized PDC and its estimates are
discussed.

A. AUTOREGRESSIVE PROCESSES AND PARTIAL DI-
RECTED COHERENCE

A vector autoregressive model of order p, abbreviated
VAR[p], is given by

x(t) =

p∑
r=1

a(r)x(t− r) + ε(t), (1)

where a(r) are the n × n coefficient matrices of the model
and ε(t) is a multivariate Gaussian white noise process with
covariance matrix Σ.

In this model, the coefficients aij(r) describe how the
present values of xi depend linearly on the past values of the
components xj . Thus, aij(r) quantifies the Granger causal
influence from process xj onto xi [6].

In order to provide a frequency domain measure for
Granger causality, Baccala and Sameshima introduced the
concept of partial directed coherence [7] based on the Fourier
transform of the coefficient series

A(ω) = I −
p∑

r=1

a(r) e−iωr . (2)

Partial directed coherence from xj to xi is defined as

|πi←j (ω) | =
|Aij (ω)|√∑
k |Akj (ω)|2

. (3)

If the autoregressive process is stationary, partial directed
coherence is well defined. Furthermore, PDC |πi←j(ω)| takes
values between 0 and 1 and vanishes for all frequencies
ω if and only if the coefficients aij(r) are zero for all

r = 1, . . . , p. Thus, PDC |πi←j(ω)| provides a measure
for the direct linear influence of xj on xi at frequency ω.
More precisely, it compares the linear influence of process
xj on process xi at frequency ω with the influence of xj on
other variables, that is, partial directed coherence ranks the
interaction strengths with respect to a given signal source.

Partial directed coherence |πi←j(ω)| is estimated by fitting
an n-dimensional VAR[p] model to the data and using
Eqn. (2) and (3) with the parameter estimates âij(k) substi-
tuted for the true coefficients aij(k). The statistical properties
of the estimates of partial directed coherence |π̂i←j(ω)| can
be derived from those of the parameter estimates aij(k) [9].
In particular, it has been shown that, if |Aij(ω)|2 = 0, the
asymptotic distribution for N data points of

N

Cij(ω)
|Âij(ω)|2 (4)

is that of a weighted average of two independent χ2–
distributed random variables each with one degree of free-
dom for p ≥ 2 and ω = 0 mod π [9].

The denominator of Eq. (4) is given by

Cij(ω) = Σii

[ p∑
k,l=1

Hjj(k, l)
(
cos(kω) cos(lω)

+ sin(kω) sin(lω)
)]
, (5)

with Hjj(k, l) being the entries of the inverse H = R−1 of
the covariance matrix R of the VAR process x.

B. RENORMALIZED PARTIAL DIRECTED COHERENCE

For the derivation of renormalized partial directed coher-
ence, consider the two-dimensional vector

Xij(ω) =

(
ReAij(ω)
ImAij(ω)

)
, (6)

with Xij(ω)
′Xij(ω) = |Aij(ω)|2. The corresponding es-

timator X̂ij(ω) with Âij(ω) substituted for Aij(ω) is
asymptotically normally distributed with mean Xij(ω) and
covariance matrix Vij(ω)/N , where

Vij(ω) =

p∑
k,l=1

Hjj(k, l)Σii(
cos(kω) cos(lω) cos(kω) sin(lω)
sin(kω) cos(lω) sin(kω) sin(lω)

)
. (7)

For p ≥ 2 and ω 6= 0 mod π, the matrix Vij(ω) is positive
definite [9], and it follows that, for large N , the estimated
renormalized partial directed coherence

λ̂ij(ω) = X̂ij(ω)
′V̂ij(ω)

−1X̂ij(ω).

under the null hypothesis of λij(ω) = 0 is χ2–distributed
with two degrees of freedom [9].
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III. STATE SPACE MODELING AND
AUTOREGRESSIVE PROCESSES

To enable a time-resolved estimation of renormalized
partial directed coherence, a time-resolved estimation of
the autoregressive parameter matrices is necessary. To this
end the framework of state-space modeling [11], [12] can
be utilized. State space models are characterized by two
equations.

One of these equations models the hidden dynamic pro-
cess, in our case the autoregressive model

x(t) =

p∑
r=1

ar x(t− r) + ε(t). (8)

To fit in the framework of state-space modeling, this autore-
gressive model of order p has to be rewritten as a VAR[1],
which is always possible by increasing the dimension

x̃(t) =



x1(t)
...

xn(t)
...

x1(t− p+ 1)
...

xn(t− p+ 1)


(9)

resulting in the following VAR[1]-process

x̃(t) =

 a1 . . . ap

idn 0n 0n

0n
. . . 0n

 x̃(t− 1) +


ε(t)
0
...
0

 . (10)

Thereby, idn denotes the n-dimensional identity matrix and
0n the n by n matrix containing only zeros.

The second equation in the state-space modeling frame-
work is the observation equations, which reads

y(t) =
(
idn 0n . . . 0n

)
x̃(t) + η(t). (11)

The noise term η(t) is Gaussian distributed white observa-
tional noise. The state-space model consisting of Eqns. (10)
and (11) does not account for time-dependent parameters
that would be needed for a time-resolved estimation of
renormalized partial directed coherence. To achieve this,
the hidden dynamic process needs to be extended by one
equation such that the whole state-space model results in

a1(t) = a1(t− 1) + ξ1 (12)
...

...
...

ap(t) = ap(t− 1) + ξp (13)

x̃(t) =

 a1(t) . . . ap(t)
idn 0n 0n

0n
. . . 0n

 x̃(t− 1) + ε̃(t) (14)

y(t) =
(

idn 0n . . . 0n
)
x̃(t) + η(t). (15)

Equations (12)-(13) account for the dynamic changes in
the parameter matrices of the VAR process. The whole
state-space model can be fitted to measurements of an
n-dimensional system using the Expectation-Maximization
algorithm applying the extended [13], unscented [14], [15] or
dual Kalman filter [16]. In the application below we used the
Expectation-Maximization algorithm with dual Kalman filter,
which turned out to be a robust estimator with reasonable
numerical performance.

IV. APPLICATION

To demonstrate the applicability of the proposed approach
to data, we used electroencephalography (EEG) recordings of
a mouse during a transition from slow-wave-sleep to rapid-
eye-movement (REM) sleep [17]. Data were recorded with
a sampling rate of 199 Hz simultaneously from left (lHC)
and right hippocampus (rHC) and prefrontal cortex (PFx).

The result of time-resolved renormalized partial directed
coherence is shown in Fig. 2 for a representative example of
a transition in one mouse. The transition takes place after 17
seconds marked by the vertical line. Especially in frequencies
close to 10 Hz, there is a strong interaction between all brain
regions that sets in with the transition point from slow-wave
to REM sleep. In particular the directed interaction from the
right hippocampus to left hippocampus seems to be stronger
and rather stationary in this example as compared to the other
interactions. Noteworthy there is also a strong interaction
from the prefrontal cortex onto the hippocampi which sets
in later than that from left hippocampus to prefrontal cortex.

In a forthcoming manuscript we will evaluate to which
extent those features are unique or to which extent they
present a common pattern in such transitions across animals.

V. CONCLUSIONS

Challenges often faced when analyzing real-world data
manifest themselves in the fact that recorded data are, first,
multivariate, second, nonstationary, and third, contaminated
with observational noise. Tackling these problems with a
bivariate analysis techniques without proper statistical eval-
uations inevitably leads to a result that is at best presenting
a coarse view of the actual network structure. The results
will in most cases be characterized by false positive or false
negative conclusions about the network structure.

Here, we presented a technique that is capable of dealing
with all these issues. It is based on state-space modeling
and renormalized partial directed coherence, and enables
estimation of the true network structure when analyzing
multivariate, non-stationary, noisy data.

State-space modeling presents a rather flexible framework
which could even be extended beyond what we have shown
here by for instance allowing for correlated observational
noise.
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Fig. 2. Results of renormalized partial directed coherence analysis using state space modeling for estimation of the time-resolved multivariate interaction
structure. lHC: left hippocampus, PFx: prefrontal cortex, rHC: Right hippocampus. On the diagonal the raw data, amplitude A in arbitrary unit over time
in seconds, are presented together with the autospectra – logarithm of the spectra color coded with respect to frequency in Hz (y-axis) and time in seconds
(x-axis). The gray shaded plots denote the time-resolved rPDC analysis – direction of information flow is from column to row indicated by the arrows.
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