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Abstract— Directional coupling analysis of time series is an 
important subject of current research. In this paper, a method 
based on symbolic dynamics for the detection of time-delayed 
coupling in biosignals is presented. The symbolic coupling 
traces, defined as the symmetric and diametric traces of the 
bivariate word distribution, allow for a more reliable 
quantification of coupling and are compared with established 
methods like mutual information and cross recurrence 
analysis. The symbolic coupling traces method is applied to 
appropriate model systems and cardiological data which 
demonstrate its advantages especially for nonstationary and 
noisy data. Moreover, the method of symbolic coupling traces is 
used to analyze and quantify time-delayed coupling of 
cardiovascular measurements during different sleep stages. 
Significant different regulatory mechanisms are detected not 
only between the deep sleep and the other sleep stages but also 
between healthy subjects and patients. The proposed method 
may help to indicate pathological changes in cardiovascular 
regulation and also effects of continuous positive airway 
pressure therapy on the cardiovascular system. 

I. INTRODUCTION 
IOLOGICAL systems usually consist of several 
subsystems which are interrelated by feedbacks with 

time delay. To reveal such time-delayed coupling directions 
from biosignals is a basic task in understanding such 
systems [3-5]. Data recorded from these systems reflect 
biological activities of living beings and are characterized on 
the one hand by real biological information, including 
nonstationarities, nonlinearities and intrinsic noise, and on 
the other hand by measurement noise. Therefore, the 
analysis of biosignals, especially the detection of coupling 
directions is complicated. The methods known so far for 
coupling direction estimation require different assumptions, 
e.g. linearity or stationarity [6,7]. Biosignals, however, 
almost never fulfill these requirements. Nevertheless, 
different methods for the detection of coupling directions, 
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starting from Granger causality via mutual predictability to 
information-theoretic approaches [8-10] were applied to 
biosignals. All these methods are able to find directions of 
interactions. However, due to the nonstationarity and 
nonlinearity of the biosignals, the conclusions are not 
homogenous.  

Recently new methods based on order pattern analysis 
appear to circumvent these problems [11-13]. Order patterns 
result from a coarse graining (symbolization) of the data into 
two states: increasing or decreasing amplitudes. This 
symbolic representation of successive amplitudes is not 
sensitive to nonstationarities. Fig. 1 gives one example 
showing the potentials of symbolic anylyses: The linear 
cross correlation analysis obviously is not as applicable as 
the recurrence quantification analysis with order patterns in 
the bivariate data set of heart rate and blood pressure. The 
order pattern approach reveals the lags � of the time series 
more clearly (Fig. 1), suggesting the idea that the ordinal 
structure of nonlinear and nonstationary time series is 
necessary for the analysis of the dynamics.  

 
Fig. 1. Linear Cross Correlation Function (R) as well as Recurrence 
Quantification Analysis (Recurrence rate RR�) for the detection of 
coupling directions of real data. Top: R between heart rate (BBI) and 
systolic blood pressure (SBP) data. This analysis reveals interrelations 
between both time series for almost any lag (marked with asterisks) 
and is, therefore, not very specific. Bottom: Cross recurrence 
quantification analysis based on order patterns (CRQA(OP)) applied 
to BBI and SBP data [12,13] reveals the most significant positive 
interrelation between both time series for lag � =0 and negative 
interrelation for lag � = -2. Solid line: SBP � BBI  (positive linkage 
RR+ in [11], dotted line: BBI � SBP (negative linkage RR-). The 
order patterns are constructed using the dimension m=3 and delay 3. 
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Here we report an extension of bivariate symbolic 
dynamics [14] that greatly improves the detection of 
coupling directions in biosignals. Signals from coupled 
biological processes tend to move in the same direction or in 
opposing directions. We show that this type of relationship 
is reliably indicated by the symmetric and diametric 
bivariate word distributions. Our very intuitive measure is 
tested on paradigmatic models and applied to cardiovascular 
data, especially to bivariate time series consisting of the 
beat-to-beat systolic blood pressure and heart rate variability 
values. Revealing the coupling relations for the latter data 
enables us to quantify the short term regulation of the 
cardiovascular system, and thus to quantify the risk of 
cardiovascular disorders. In the following we develop the 
theory and give examples of symbolic coupling traces (SCT) 
which is also based on the analysis of structural patterns but 
easier to interpret and less computational intensive.  

Moreover, the SCT are applied to coupling analysis of 
heart rate and systolic blood pressure during different sleep 
stages. The cardiovascular consequences of disturbed sleep 
are of particular high medical interest for sleep physicians 
because they present a risk factor for cardiovascular 
disorders such as hypertension, cardiac ischemia, sudden 
cardiac death, and stroke. Our new derived measures may 
help to detect pathological mechanisms for these health risks 
during sleep. Understanding these cardiovascular 
mechanisms during sleep may be useful to predict effects of 
treatment in subjects with disordered breathing during sleep 
as well as in other sleep disorders and effects of ageing in 
healthy subjects.  

II. SYMBOLIC COUPLING TRACES 
To introduce the SCT method, we consider a dynamic 
system represented by two paired one-dimensional time 
series x(t) and y(t). They are first transformed into two 
symbol sequences sx(t) and sy(t) via the transformation rule 

 
Next, we construct series of words wx(t) and wy(t) containing 
l=3 successive symbols from the time series sx(t) and sy(t), 
respectively. Hence, eight different patterns (d=2l=8) are 
possible. These patterns are invariant with respect to an 
arbitrary, increasing transformation of the amplitude. 
Afterwards, the bivariate word distribution (BWD)  
(pij) i=1,..,8, j=1,..,8  is estimated [14]. pij is the joint probability 
that the words Wi and Wj occurs at the same time t in the 
word sequences wx(t) and wy(t), respectively. To measure the 
delay-time probability matrix that the word Wi occurs in wx 
at time t and  Wj occurs in wy at time t+�, we introduce 

 
In order to consider short time-delayed dependencies in the 
cardiovascular system, we choose the lag � between -20 and  

 

 
Fig. 2. Scheme for calculating the bivariate word distribution. Starting 
from two time series (e.g. SPB and BBI upper part), a two-
dimensional symbol sequence (middle part) is calculated by a symbol 
transformation which leads then to the bivariate word distribution 
(lower part) as the basis of parameter calculation. 

 
20. With the given binary symbol transformation we take a 
loss of amplitude information, however, in time series with 
moderate noise and nonstationarities these information can 
be unreliable. Through symbolization, word transformation 
and symmetric bivariate selection of the diagonals we can 
exclude random effects and include significant coupling 
information only. In this paper, SCT is based on differences, 
which is sufficient for many applications but the symbol 
transformation can also be adapted for further use. 
Significant coupling information is quantified by two 
parameters based on the BWD-diagonals:  

(i) The trace T of the matrix P(�) is defined as   
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It represents the fraction of both time series, which are 
structurally equivalent to each other at lag �.  

(ii) The parameter  
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describes the fraction of both signals, which are structurally 
diametric at lag � (d is the number of different patterns). 
Both parameters vary from 0 to 1 and comprise the 
diagonals of the BWD only. Other measures such as the 
Shannon-entropy as a possible parameter to quantify the 
complete BWD are tested, too. However, it does clearly not 
reveal the correct lags in the theoretical model. Finally, the 
difference TTT ���  of the above parameters is the most 
appropriate choice. 

Apart from the cross recurrence and SCT parameters, the 
classic cross correlation function R and the mutual 
information I are calculated for comparison. The cross 
correlation function reveals information about symmetric 
R(�) > 0 and diametric R(�) < 0 behavior in the time series. 
The mutual information, as a parameter of information 
theory, does not reveal any information about symmetric and 
diametric behavior in the time series, but is based on 
estimated distributions. 

III. RESULTS 
To study significance limits for all methods introduced 
above, the parameters are calculated for randomized time 
series. For the latter one no coupling should exist. 
Therefore, the maximum and minimum of the parameters in 
the group of simulations represent the border of significant 
coupling. To validate the new method, the simplest approach 
is used: Simulations of coupled 2D autoregressive (AR) 
processes (cf. Fig. 3 left part). The coefficients of the AR 
models are varied in order to study the influence of varying 
coupling strengths and of noise. For an example with model- 

 
 
 detected correctly by all four methods. The significance 
limits are represented by dashed horizontal lines. In contrast 
to the  
 
 
 
specified lags at � =-2 and � =1 (Fig. 3 left part), all lags are 
SCT, the other three methods are not able to localize these 
lags exactly. The SCT-parameters detected the lags in case 
of delayed coupling with autocorrelation more clearly than 
cross correlation, mutual information and recurrence plot 
based on order pattern. This way up to 4 lags can be 
detected correctly by the SCT-parameters. For higher noise-
levels this advantage decreases, however, for cardiological 
time series autocorrelation with certain coupling have to be 
expected. Consequently, the SCT parameters are suitable for 
analyzing the coupling of these signals (cf. Fig. 3 right part). 
For a further validation, we also applied it to nonlinear 
coupled models, e.g. SETAR (self-exciting threshold 
autoregressive model) systems and got similar results.  

For the data of the different sleep stages [2], R and I are 
calculated also for differential time series to have a more 
appropriate comparison. Nevertheless, both parameters still 
have problems to detect time-delayed couplings in 
oscillating signals with noise interaction which results in 
additional coupling terms [2]. For all groups and for all 
sleep stages we obtain the same characteristic pattern of �=-2 
for diametric coupling and �=0 for symmetric coupling as 
one can see in Fig. 4. Moreover, there are additional lags in 
light and deep sleep which reaches from -8 to +4. The 
hypertensive DD group was the only group with other 
detected lags beside 0 and -2 in the wake and REM stages 
(Fig. 4} wake (d)). As quantified by the Kruskal-Wallis test, 
there are significant differences in the strength of the 
detected lags 0 and -2 (stars in Fig. 4). The most prominent 
difference can be seen between REM and deep sleep, except 
in the NT CPAP group Fig. 4 (c). 

Fig. 3. Comparison of the calculated SCT parameter TTT ��� , R, the mutual information I and the recurrence rate difference �RR for a 
simulation (left, xi = axi-1 + byi-�1 + �i and yi = cyi-1 + dxi-�2 + �i, two coupling terms coupling yi-�1 and xi-�2, �=N(0,0.1), �=N(0,0.1), a=0.3, b=0.7, 
c=0.3, d=0.7) and experimental data of a healthy volunteer (right) at different lags �. Significant lags are drawn as boxes, insignificant as stems. A 
simulation with symmetric coupling at � = 1 as well as diametric coupling at � = -2 is indicated on the left. The exact detection of the lags by �T is 
obvious. This is also true if nonstationarities, such as additive trends or heteroscedasticy are present. R and I as well as �RR help to draw 
conclusions about the lags, but do not show them clearly. On the right, the most significant lags in the real data are revealed by �T at � = 0 and � = -
2,  i.e. BBIs correspond diametrically � = -2 and symmetrically � = 0 with SBP. The parameters R, I and �RR do not show these lags as clearly as 
�T resp. show false significant lags. 
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Fig. 4. The comparison between the sleep stages (wake=W, 
REM�sleep=REM, light sleep=LS, deep sleep=DS) and the different 
patient groups [healthy controls (a), normotensive DD (b), 
normotensive CPAP (c), hypertensive DD (d), hypertensive CPAP (e)] 
clearly shows the short-term asymmetry in the coupling during wake 
and REM characterized by lags � =�2 and �=0. This asymmetry 
becomes less in light sleep and is lost in deep sleep when periodic 
breathing leads to a modulation of Bi and Si. Significant differences in 
the coupling strength at � =0 and �=�2 between the sleep stages are 
indicated by * (p<0.05, Kruskal–Wallis test). Differences exist at both 
lags in the control patients group as well as hypertensive CPAP. In 
normotensive DD and hypertensive DD, only the lag �=0 is 
significantly different between the sleep stages. 

IV. DISCUSSION 
The time-delayed coupling analysis of the theoretical models 
and our measurements demonstrates the advantage of the 
SCT in comparison to standard methods. We find significant 
lags at � =-2 and � =0 for all groups. This strengthens the 
prevailing opinion about the cardiovascular short term 
regulation. The symmetric lag at �=0 reflects the respiratory 
induced arterial pressure and heart rate fluctuations, whereas 
the diametric lag at �=-2 represents the vagal feedback from 
heart rate to systolic blood pressure. Moreover, we show 
that this coupling pattern does not change generally in 
different sleep stages; however, the strength of interactions 
may differ. During deep sleep only, we see a loss of heart 
rate and blood pressure asymmetry as well as an effect of 
CPAP therapy on the cardiovascular coupling. 

We demonstrate that the SCT is more specific than 
standard methods regarding the detection of delays and 
directions of interactions. Nevertheless, for the general 
assessment of coupling directions in time series, both new 
and established methods should be used. Coupling in 
stationary data with strong noise can be well detected via 
mutual information and cross correlation, whereas in 
deterministic data cross recurrence should be preferred. The 
parameters of the SCT method and cross recurrence based 
on order pattern close the gap in the coupling analysis of 

nonstationary time series with strong autocorrelation and 
moderate noise, where cross correlation, mutual information 
and other methods are not sufficient to localize the lags 
exactly. The prevailing opinion about the cardiovascular 
short term regulation is based on antagonistic nervous 
control via vagus and sympathicus. Here, we confirm the 
results of [1] with significant lags at � =-2 and � = 0. 
Moreover, we show that this coupling pattern does not 
change generally in different sleep stages; however, the 
strength of interactions may differ. The highest amplitudes 
for �T we find for deep sleep, the lowest for REM (cf. 
Fig. 4). This relation can be explained with a reduced 
sympathetic activity during deep sleep, leading to more 
pronounced respiratory influence and an increased vagal 
feedback. Again during deep sleep, where many 
physiological regulatory mechanisms such as cerebral blood 
flow and cerebral metabolic rate are reduced, we find an 
increased heart rate and blood pressure symmetry leading to 
multiple lags of � =-2 and � = 0. Summarizing, the proposed 
method of the symbolic coupling traces may help to indicate 
pathological changes in cardiovascular regulation and also 
effects of continuous positive airway pressure therapy on the 
cardiovascular system.  
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