
Microaneurysm Detection with Radon Transform-based
Classification on Retina Images

L. Giancardo, Student Member, IEEE, F. Meriaudeau, Member, IEEE, T. P. Karnowski, Member, IEEE,
Y. Li, Member, IEEE, K. W. Tobin Jr, Senior Member, IEEE and E. Chaum, Member, IEEE

Abstract—The creation of an automatic diabetic retinopathy
screening system using retina cameras is currently receiving
considerable interest in the medical imaging community. The
detection of microaneurysms is a key element in this effort. In this
work, we propose a new microaneurysms segmentation technique
based on a novel application of the radon transform, which is
able to identify these lesions without any previous knowledge of
the retina morphological features and with minimal image pre-
processing. The algorithm has been evaluated on the Retinopathy
Online Challenge public dataset, and its performance compares
with the best current techniques. The performance is particularly
good at low false positive ratios, which makes it an ideal candidate
for diabetic retinopathy screening systems.

I. INTRODUCTION

Diabetic retinopathy (DR) is the leading cause of new cases
of blindness among adults aged between 20 and 74 years. The
Centers for Disease Control and Prevention estimates that 25.8
million people currently have diabetes mellitus in the United
States alone. The World Diabetes Foundation estimates that
over 439 million people will have diabetes worldwide by 2030.
New high-quality mydriatic and non-mydriatic fundus cameras
have the potential to greatly improve our ability to effectively
screen the retinas of a large population and to identify patients
with vision threatening disease complications. In fact, it is
estimated that timely treatment with laser therapy can reduce
the development of severe vision loss by 50% to 60% in a
patient with DR [1].

Microaneurysms (MAs) are a common and often early
manifestation of DR. They are dilated, aneurismal retina
vessels that appear as small red dots in colour retina fundus
images. These lesions can leak fluid and blood into the retina,
leading to vision threatening exudates, macular edema and
hemorrhages. These MAs are the primary target lesions for
laser treatment of macular edema. As such, the MA detector
is an attractive candidate for an automatic screening system
able to detect early findings of DR.
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Fig. 1. (a) Example of a retina fundus image with a MA magnified; (b)
Inverted green channel of (a) with MAs automatically detected.

In the early literature [2, 3, 4], algorithms were developed
to detect MAs (and other small round hemorrhages) in fluo-
rescein angiograms. They employed a series of morphological
operations which remove the vasculature, leaving the other
small structures representing the MAs. These approaches
perform well on fluorescein angiograms but are not satisfactory
on colour fundus images. Fluorescein angiograms use an
intravenous contrast agent, therefore the contrast between
vessels/lesions and background is much greater than that
of colour fundus images making the development of the
algorithm straightforward. Unfortunately, the injection of the
contrast agent is not a risk-free process and requires more
highly trained personnel to deliver than a simple fundus
photograph, hence it is not an optimal approach for broad-
based DR screening.

In 2008, Niemeijer et al. [5] announced the Retinal Online
Challenge (ROC). The aim was to focus the efforts of the
research community towards the creation of algorithms for
the detection of MAs on colour fundus images, by evaluating
their performance on a common dataset. Two sets of 50
images captured by different cameras that imaged the same
area of the retina (45 degrees) were released to the research
community together with a common evaluation modality. This
allowed a fair comparison between algorithms developed by
different groups. So far, 11 groups have participated in the
challenge. The two top performing techniques [6, 7] are based
on a combination of multiple techniques that require various
intermediate steps such as vessel segmentation and multiple
classifiers.

In a previous paper [8], we have shown how the Radon
Transform is particularly suited for the compact representation
of Gaussian-like structure such as MAs. In this work, we
analyse the radon space with a new set of features classified
through Principal Component Analysis (PCA) and a Support
Vector Machine (SVM) which increase the performance sub-
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stantially. This method is streamlined, does not require a vessel
segmentation and is easily trainable.

In Section II we present the details of the algorithm
developed; Section III discusses the characteristics of the
ROC dataseta and our samples selection approach; Section
IV presents the results; finally, Section V concludes with a
discussion of the method and results.

II. METHOD

Our method starts with a very conservative candidates
selection phase, in which we rule out the obvious areas that
cannot contain any type of dark lesion. This phase is required
only to avoid unnecessary computations. Then, we split the
image into small windows and we proceed with the creation
of the Radon based features. In the final phase, we assign a
score representing the likelihood of containing a MA to each
window in the image.

A. Feasibility Study Data

The algorithm was developed on 5 images selected from
different datasets. One of these images came from the ROC
training set. A total of 122 window samples were manually
selected with the following distribution: 60 windows contain-
ing MAs, 38 windows containing vessels and 24 windows
containing only background.

B. Candidates Selection

The green channel Ig is extracted from the original RGB
image and resized (with bilinear interpolation) such that the
original ratio height/width remain unmodified and the new
width is 768 pixels. The black background around the field
of view (FOV) is detected with a simple region growing
method [9] and stored in Imask. Ig is cropped based on the
redundant rows and column of Imask in order to maximize
the FOV. Then, the background is estimated by the means
of a large median filter on Igi, the inverted version of Ig
(see Fig. 1.b). The dimension of the median filter is 4%
the size of Igi. The background image is subtracted from Igi
obtaining an image whose distribution is naively assumed to be
Gaussian and normalized with µ = 0.5 and σ = 0.2. All the
pixels not laying between 0 and 1 are considered “outliers”
and changed to the nearest valid value. While the value of
µ was chosen to be in the middle of the allowed range,
the value of σ was empirically derived from the 5 images
employed in the feasibility study, so that a high percentage
of the image pixels (∼95%) would stay in the allowed range.
Inorm is the image generated by this type of normalization,
which allows to compare the pixel values across images with
different pigmentation, illumination and contrast. On the top
row of Fig. 2, details of Igi (Ii

win) are shown together with the
normalized version (Ii

winEq).
The pixels selected as candidates are those having a value

greater than a hard threshold th = 0.58 and that do not lie on
Imask. th is selected to be a very conservative value such that
all the areas corresponding to the MAs of the 5 images in the
feasibility study are included.

C. Radon Transform Analysis

The Radon based features are calculated on Igi. This image
did not undergo any type of preprocessing apart from cropping,
resizing and pixel value inversion operations. By employing
Igi directly, we avoid the small artefacts that are inherent to the
background subtraction operation, especially on images with
a substantial JPG compression such as the ones found in the
ROC dataset.

The image is partitioned in 5×5 pixel windows in order to
form a grid-like pattern. Each window is deemed as valid if
it contains at least one candidate pixel. Each valid window
is centered on the pixel with the highest value in its local
neighbourhood, in order to have the suspected MA in the
middle of the window. The Radon transform is calculated on
a 17×17 neighbourhood (Ii

win), with scanning angles between
0◦ and 165◦ spaced of an interval of 15◦. Because of the non-
isometric support (the window is a square), at some angles
the Radon projections will go through an unequal number
of pixels, which leads to an image containing coefficients
biased towards certain locations. This “Radon transform bias”
problem is overcome by normalizing each projection ray by
the number of pixels that it crosses as described in [8]. Fig. 2
shows some examples of the Radon space obtained (Ri).

We attempt to capture the characteristics of the radon space
that separate the MAs from other dark structures, such as
vessels or pigmentation noise, with a straightforward analysis.

Ri
µ(x) =

1
φ ∑

φ

n=1 Ri(n,x) 0 ≤ x < ρ (1)

Ri
σ (x) =

√
1

φ−1 ∑
φ

n=1 [R
i(n,x)−Rµ(x)]2 0 ≤ x < ρ (2)

where i is the index of a window, Ri is the window in
the normalized Radon space having on the horizontal axis
the different angles of projections and on the vertical one
the number of projections for each angle. φ is the number
of projection angles and ρ is the number of projection rays.

Note that Ri
µ is a vector containing the mean across the rows

of Ri. In the case of a MA, it will have a strong maximum
in the middle, even if another prominent structure (such as a
vessel) is at the periphery of the window Ii

win. Since we want to
use Ri

µ as features for classification purposes, we need to make
these measurements as homogeneous as possible. The fact that
the radon transform is calculated on a non-normalized image
might create problems in this regard. Therefore we employ the
first derivative d

dx Ri
µ(x), which is able to capture the location

of maxima and minima without using absolute values (that
differ depending on the background pigment, contrast and
illumination).

In some instances, there is a strong resemblance between
MAs and vessel bifurcations. By employing Ri

σ (i.e. the
standard deviation across the rows of Ri) we can determine
if the central crest of Ri is constant or not. In the first case,
Ri is very likely to contain a MA, but in the second case
some type of vessel bifurcation. We add Ri

σ to the feature
vector unchanged because the standard deviation is inherently
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Fig. 2. Visualization of Radon transform analysis. Each column represents the analysis for a single window. In the top row, the original (Ii
win) and the

equalized (Ii
winEq) windows are shown; in the second row, the normalized radon space (Ri) is shown; in the third row, the vectors Ri

µ are displayed (at different
scales); in the last row, the vectors Ri

σ are shown.

independent of different types of backgrounds. Fig. 2 shows
the various analysis steps for different sample classes.

Finally, the feature vector is generated as F i =
( d

dx Ri
µ

Ri
σ

)
and

by removing all the dimensions always having a value of 0.

D. Classification

The original feature vector F i has 37 dimensions (this
number may vary depending on the implementation of the
Radon transform). The samples are normalized so that the
samples distribution has 0 mean and a standard deviation of
1 across each dimensions. Then, all F i are projected to an
hyperplane of 10 dimensions obtaining F i

pca through Principal
Component Analysis (PCA). During the feasibility study, we
have estimated that this dimensionality reduction maintains
95% of the original variance, hence little information is lost
during the process and making possible the reduction of the
data dimensionality. At the feasibility study stage, this was
confirmed by a 10-fold classification test: the SVM classifier
obtained a score of 0.89 of the Area Under the ROC Curve
(AUC) on the original F i and a score of 0.96 AUC after PCA
dimensionality reduction.

As already mentioned, the F i
pca is classified with a SVM. We

employed a 3 degrees radial basis kernel with ε = 0.001 and
the estimation of the probability with the method implemented
in the LIBSVM library by J.C. Platt [10].

The calculation of the probability of being a MA is a
combination of the SVM probability output and the average
grey level at the centre of the equalized window of Ii

winEq
3×3 neighbourhood. The two probabilities are combined by a
multiplication as suggested by the unnormalized Bayes rule.

The final step is a non maxima suppression in the matrix
containing the MA probabilities, so that neighbouring MAs
are not considered separate detections but a single one. This is
performed with a morphological closing operation with 12×12

structuring element, followed by a blob analysis. Fig. 1 shows
an example of the MA detection.

III. MATERIALS AND TRAINING STRATEGY

We evaluated the MA detection algorithm on the ROC
dataset. In the this dataset, four retinal experts annotated all the
small red lesions (MA and round hemorrhages) by labelling
them as MA or irrelevant lesions. The set was divided in
two: training and testing (composed of 50 images each). For
the former, the global judgement of the experts was publicly
released via an XML file, which did not contain the source of
the decision but only the global labels combined together with
an OR operation. This maximized the global sensitivity at a
price of a certain number of false positives. The lesion labels
on the test set were withheld in order to avoid training on
the testing set. In this case, the gold standard of the experts’
judgement was created with a voting system for a better trade
off between sensitivity and false positives.

A novel training strategy was adopted for the classifier. First,
we hand selected all the unambiguous MAs from the ROC
training set and used them as positive examples. Then, we
manually selected a handful of negative examples and trained
a “baseline” classifier. At this point, we employed an on-
line training technique to update the classifier with negative
examples. This is possible through a GUI (that we developed)
that is able to add a negative sample, train the classifiers and
show the detection in real time. We picked an image showing
a few MAs (from the training set), and we added negative
samples up until we were satisfied with the detection. This
approach allows us to add only the negative examples that
are effectively useful to the MAs classification leaving the
uncertain structures out of the training set. By minimizing the
samples required, we avoid overtraining and greatly simply
the whole training process. We trained the classifier used for
these tests in around 20 minutes.
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Fig. 3. Comparison of the FROC curves of all the groups that participated at
the ROC. On the y-axis, the average image based sensitivity is displayed, on
the x-axis, the average number of false positives (FPs) found on each image
is shown. Note that the FPs are plotted on a logarithmic scale.

IV. RESULTS

Fig. 3 shows the results of the comparative FROC analysis
on the Retinopathy Online Challenge data. Our technique
compared very well with other submissions, particularly at
a low false positive (FP) rate. This can be better appreciated
in Table I. Relatively high performance at a low FPs rate are
particularly interesting for a screening setting, where it is not
important to find all the MAs, but to find enough of them to
decide that the patient needs referral.

TABLE I
RETINOPATHY ONLINE CHALLENGE COMPARISON

Group Global Score Sensitivity at 0.5 FPs

This paper (ISMV) 0.375 0.366
Waikato RIG 0.206 0.184
Fujita Lab 0.310 0.259
LaTIM 0.381 0.318
OKmedical 0.357 0.315
OKmedical II 0.369 0.297
IRIA-Group 0.264 0.192
GIB Valladolid 0.322 0.254
Niemeijer et al. [7] 0.395 0.336
DRSCREEN [6] 0.434 0.380
Lazar et al. 0.355 0.274

with the exception of our results, the table shows results in the order found
on the ROC website http://roc.healthcare.uiowa.edu/ as of March 2011.

In the current unoptimized Matlab implementation, the
whole analysis process takes ∼12 seconds per image on a

1.6 GHz machine with 4 GB of RAM. This figure can be
easily reduced because more than half of the total time is spent
on the FOV detection, preprocessing and window alignment.
Also, the algorithm has the potential of greatly benefit of
parallelization because of independent nature of the window
based analysis.

V. CONCLUSIONS AND DISCUSSION

In this paper we present a MA detector based on a novel
radon-based approach. The radon based features allows the
detection of MAs directly on the original image without vessel
or optic nerve segmentation. Also, they are inherently able to
identify MAs of different sizes without multiscale analysis.
Another advantage of the algorithm, is the ease of training. It
does not require a large dataset, once some examples of MAs
are shown to the classifier, it is simply a matter of dynamically
selecting the negative examples on one or two images to make
the algorithm “converge” to the desired performance.

This algorithm seems particularly well suited as a com-
ponent of DR screening applications. In the near future, we
will test the algorithm performance in this context and we
will couple it with other techniques to determine if combining
approaches improve its sensitivity to subtle MAs.
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