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Abstract— In this paper, results of a diabetic retinopathy
screening experiment are presented which is based solely on
the findings of a microaneurysm detector. For this purpose, an
ensemble-based algorithm developed by our research group was
used; this provided promising results in our earlier experiments.
At its best, the 1200 image of the Messidor database is classified
by this detector with a sensitivity of 96%, a specificity of
51% and achieved an AUC of 0.87. As anticipated, larger
microaneurysm counts are recognized with higher level of
certainty. Therefore, this approach might be expected to have
good performance in relation to the severity of the disease.

I. INTRODUCTION

Diabetic retinopathy (DR) is one of the most common
causes of blindness. In clinical practice there are existing
treatments which are very effective in reducing vision loss
in case of early detection of the disease. Due to the large
number of patients with diabetes, provision of population
coverage can be problematic in certain parts of the world.
Several efforts have been made to aid the manual screen-
ing by an automated image analysis based process. The
development of such systems has reached the point where
they produce equal results to human experts [1]. One of
the key components of DR screening is the localization of
microaneurysms (MAs), which are the earliest and at the
same time the hallmark lesions of this disease, therefore a
prime candidate for automated image analysis. According to
the clinical protocol, the presence of a single MA refers to
DR.

Our research group has been developing an ensemble-
based MA detector. This methods has been proven to be very
effective in the Retinopathy Online Challenge [2], where it is
currently ranked as first. In clinical grading (both manual and
automated) high sensitivity is desired with a fair specificity
rate. Since MA detection is a key component in automatic
screening, it is critical to have good sensitivity/specificity
values for this step.

MAs appear as small, dark, circular objects in retinal
images. To develop a successful MA detector, one must
have to deal with several difficulties. First, the sensitivity
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of such algorithms is low. As our previous work showed [3],
the first problem can be fixed by setting up an ensemble
consisting of 〈preprocessing methods, candidate extractors〉
pairs from different approaches. It is also a problem that
several false detections appear as MAs can be confused with
some features (e.g. pigment, artefacts) and vessel fragments.
The solution for the this problem is to establish a voting
scheme among these pairs.

In this paper, the results of the MA detector developed
by our group is presented. The 1200 images of Messidor
database was used for testing purposes. The system was
trained on an independent dataset.

The rest of the paper is organized as follows: in section
II, a brief description of the ensemble-based microaneurysm
detector is provided. Section III contains quantitative results,
and the the discussion of lessons learnt in this experiment.
Finally, section IV details the conclusions.

II. OUR ENSEMBLE-BASED MICROANEURYSM DETECTOR

In this section, we present our ensemble-based MA de-
tector, which can be organized into the following steps.
All available preprocessing methods and candidate extractors
were placed in the ensemble pool (section II-A and II-B). A
subset of combinations from the ensemble pool were selected
after evaluation on the training set (section II-C). MAs are
extracted using selected combinations of test images (section
II-D). A spatial voting is performed on the detected MAs
(section II-D). The ensemble approach is also shown in
Figure 1.

Fig. 1. Flow chart of the ensemble-based framework.

A. Preprocessing methods

In this section, the selected preprocessing methods are
presented. These are to be applied before executing MA can-
didate extraction. These algorithms are collected from current
literature recommendations for medical image processing.

1) Walter-Klein contrast enhancement [4]: This prepro-
cessing method aims to enhance the contrast of fundus
images by applying a gray level operator, which stretches the
histogram of the image according to a real-valued parameter.
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2) Contrast Limited Adaptive Histogram Equalization
(CLAHE) [5]: The image is split into disjoint regions, and on
each region a local histogram equalization is applied. Then,
the boundaries between the regions are eliminated with a
bilinear interpolation.

3) Vessel removal and extrapolation [6]: This methods in-
vestigates the effect of processing images with the complete
vessel system being removed, based on the idea proposed
in [6]. It extrapolates the missing parts to fill in the holes
caused by the removal using inpainting.

4) Illumination equalization [8]: This preprocessing
method aims to reduce the vignetting effect, which causes
uneven illumination of retinal images. The difference of
the desired average intensity and the actual local average
intensity to each pixel intensity.

5) No preprocessing: In the ensemble pool, the results of
candidate extractors are also included on the original images
without any preprocessing.

B. MA candidate extractors

Candidate extraction is a process aiming to spot objects in
the image showing MA-like characteristics. Individual MA
detectors follow their own way to extract MA candidates.
In this section, a brief overview of the candidate extractors
involved in our analysis is provided. These algorithms realize
different approaches that were described in details in the
introduction.

1) Walter et al. [9]: Candidate extraction is accomplished
by grayscale diameter closing. That is, the method aims to
find all sufficiently small dark patterns on the green channel.
Finally, a double thresholding is applied.

2) Spencer et al. [10]: From the input fundus image, the
vascular map is extracted by applying twelve morphological
top-hat transformations with twelve rotated linear structuring
elements. Then, the vascular map is subtracted from the input
image, which is followed by a Gaussian matched filtering.
The resulting image is then binarized with a fixed threshold.
Since the extracted candidates are not precise representations
of the actual lesions, a region growing step is also applied
to them.

3) Circular Hough-transformation [11]: Following the
idea presented in [11], we established an approach based
on the detection of small circular spots in the image. Candi-
dates are obtained by detecting circles on the images using
circular Hough transformation. With this technique, a set of
approximately circle-shaped objects can be extracted from
the image.

4) Lazar et al. [12]: Pixel-wise cross-section profiles with
multiple orientations are used to construct a multi-directional
height map. This map assigns a set of height values that
describe the distinction of the pixel from its surroundings
in a particular direction. In a modified multilevel attribute
opening step a score map is constructed, from which the
MAs are extracted by thresholding.

5) Zhang et al. [13]: In order to extract candidates, this
method constructs a maximal correlation response image for
the input retinal image. This is accomplished by considering

the maximal correlation coefficient with five Gaussian masks
with different standard deviations for each pixel. The max-
imal correlation response image is thresholded with a fixed
threshold value to obtain the candidates. Vessel detection and
region growing is applied to reduce the number of candidates,
and to determine their precise size, respectively.

C. Ensemble selection and the spatial voting scheme

First, a pair from each preprocessing method and candidate
extractor is formed by generating the output of the candidate
extractor on the training images with the given preprocessing
method applied. The combination of such pairs is accom-
plished by merging their outputs. The number of potential
combinations is 225−1 as a subset of 25 pairs is selected. The
optimal combination of pairs is found by simulated annealing
[14], which is an effective search algorithm in large search
spaces.

This search algorithm requires an energy function to be
optimized, which was defined by applying a voting scheme:
the candidates extracted by the 〈preprocessing method, can-
didate extractor〉 pairs are analyzed based on their spatial
density. A real value between 0 and 1 are assigned to each
according to it. Each combination is characterised by their
average sensitivity at seven predefined false positives / image
rates [15]. The combination with the highest energy values
is selected and used for the classification of the unknown
data.

D. MA detection

After the pairs are selected, the actual MA detection on
unknown images can be performed. First, MA candidates
using all selected pairs are selected. Then, a confidence value
to all candidates are assigned as discussed in section II-
C. Finally, the detected MAs are extracted by thresholding.
With the adjustment of this threshold value, the number
of MA candidates can be controlled. This influences the
sensitivity/specificity of the system.

III. RESULTS AND DISCUSSION

The publicly available Messidor database was used to
evaluate the grading performance of our detector. This
database consists of 1200 images with 45 field of view
(FOV) and different resolutions. For each image, a grading
score ranging from R0 to R3 is provided. The grades usually
denotes to following conditions [16]: a patient with an R0
grade has no diabetic retinopathy (DR). R1 and R2 are
background and pre-proliferative retinopathy, respectively.
Finally, R3 is denotes proliferative diabetic retinopathy. This
grading is based on certain features included in DR grading,
examples of which are appearance of MAs, haemorrhages
and neovascularization.

A. Training

As there is no training set provided for the Messidor
database, the ROC dataset [2] was used as training set. This
is the same that that was also utilised in the Retinopathy
Online Challenge successfully. The dataset consists of 50
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color retinal images with different FOVs and resolutions. The
selected 〈Preprocessing method, candidate extractor〉 pairs
for the optimal ensemble on the data can be seen in Table I.

B. Testing

In our experiment, we classified the retinal images whether
they contains signs of DR (R1, R2, R3) or not (R0). The
MA detector classifies an image as diseased if it at least one
MA is detected (see Fig. 2 for some examples), and healthy
otherwise. It is important to note that it is not essential to
detect all MAs for grading, but it is essential to detect MAs
where DR is present. We measured the performance of the
detector at different thresholds. We provided the sensitivity,
specificity and the accuracy for several thresholds in Table
II. The ROC curve of the detector can be seen in Fig. 3. The
area under this curve (AUC) is 0.87, which is similar to the
0.86 reported by Abramoff et al. in [1] on a different dataset.

It is also interesting to see how the different classes
recognized at different threshold. According to the protocol
used for the grading of the Messidor dataset, an image at R1
level contains at least 1 MA, while this number is 5 for R2
and 15 for R3, respectively. Thus, it is expected that an MA
detector recognizes a more severe case easier. This claim is
fulfilled by our approach, as it can be seen in Table III that
the severity of DR affects the performance of the detector.
At every threshold, where the sensitivity is less than 1.0, the
more severe case recognized with a higher percentage.

Fig. 2. Detected microaneurysms on a sample image.
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Fig. 3. ROC curve of the detector on the Messidor dataset.

C. Discussion

The most important question is how to select the appro-
priate threshold for our detector. In Table II, we can see
that the most accurate result is achieved with threshold level
0.9. However, most of this accuracy originates from the
high specificity level, which is for the sake of efficiency,
and sensitivity is more important for a screening system
[1]. Thus, we selected the results at the 0.8 threshold value
as the more appropriate for the clinical needs, where 96%
sensitivity and 51% specificity is achieved. That is, we
recognize almost all of the cases where DR is present, and
also the half of the healthy ones. For a comparison, the study
of Abramoff et al. [1] reported a sensitivity of 90% at a
specificity of 54,7%.

It is also important to compare our method to the perfor-
mance of human graders. In [17], the following sensitivity
/ specificity values are reported for three human graders:
73% / 89%, 62% / 84%, 85% / 89% with a moderate inter-
rater agreement (an average κ-statistic of 0.55). With the
formula presented in [1], it can be calculated, that three
graders with the grading performance presented above will
miss approximately 260 images from the Messidor dataset.
Our algorithm missed 293 images, mostly from the healthy
ones.

The presented results are promising, however, it can be
noted that in our experiment, the number of the healthy
and diseased patients are almost equal. This mirrors the real
screening situation closely, but not entirely, as in population
screening, the proportion of the non-DR ones are about 60%.
However, due to its high sensitivity, the detector is expected
to perform well also for cases where different proportions are
present (e.g. in [1], where only 10% of the images contained
no signs of DR).

IV. CONCLUSIONS

In this paper, we presented the results of an evaluation of
a microaneurysm detector for diabetic retinopathy screening
developed by our research group. This detector previously
showed its efficiency at an online challenge, where it is
ranked as first. We measured the grading performance of this
detector using the 1200 images of the Messidor database. We
have achieved a 96% sensitivity and 51% specificity with an
overall 0.87 AUC, which is similar to the previously reported
results on different databases. The results are also compared
to the expected performance of human graders, which is
similar to ours.

The results presented in this paper are promising. Our
MA detector can be further improved by adding more
preprocessing methods and MA candidate extractors for
the ensemble pool. Furthermore, in an automatic screening
system, more components should be taken into consideration
besides MA detection. Namely, the system should contains
quality assessment to filter out low quality images. Moreover,
we can incorporate exudate detection and a module dedicated
to the recognition of severely ill retinas. Adding these
components is expected to boost the sensitivity / specificity
values achieved by only MA detection.
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TABLE I
〈PREPROCESSING METHOD, CANDIDATE EXTRACTOR〉 PAIRS SELECTED AS MEMBERS OF THE ENSEMBLE BASED ON THE ROC DATASET.

PPPPPPPPPPPPP
Preprocessing

Candidate
extractor Walter Spencer Hough Lazar Zhang

Walter-Klein •
CLAHE • •
Vessel removal and extrapolation • •
Illumination equalization •
No preprocessing • • •

TABLE II
SENSITIVITY, SPECIFICITY AND ACCURACY OF THE DETECTOR ON THE MESSIDOR DATASET AT DIFFERENT THRESHOLD LEVELS.

PPPPPPP
Measure

Threshold 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sensitivity 1 1 1 0.99 0.96 0.76 0.31
Specificity 0 0.01 0.03 0.14 0.51 0.88 0.98
Accuracy 0.53 0.54 0.55 0.59 0.75 0.82 0.62

TABLE III
SENSITIVITY OF THE DETECTOR BY THE SEVERITY OF DR ON THE MESSIDOR DATASET.

PPPPPPPPPPPPP
Class

Threshold

0.4 0.5 0.6 0.7 0.8 0.9 1.0

R0 (normal fundus image) 0.00 0.01 0.03 0.14 0.51 0.88 0.98
R1 (background retinopathy) 1.00 1.00 1.00 0.97 0.92 0.60 0.18
R2 (pre-proliferative retinopathy) 1.00 1.00 1.00 1.00 0.96 0.72 0.29
R3 (proliferative retinopathy) 1.00 1.00 1.00 1.00 0.98 0.92 0.42
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