
 

 

 

  

Abstract—Diabetic retinopathy (DR) is a complication of 

diabetes, which if untreated leads to blindness. DR early 

diagnosis and treatment improve outcomes. Automated 

assessment of single lesions associated with DR has been 

investigated for sometime. To improve on classification, especially 

across different ethnic groups, we present an approach using 

points-of-interest and visual dictionary that contains important 

features required to identify retinal pathology. Variation in 

images of the human retina with respect to differences in 

pigmentation and presence of diverse lesions can be analyzed 

without the necessity of preprocessing and utilizing different 

training sets to account for ethnic differences for instance.  

I. INTRODUCTION 

NDIGENOUS populations such as the Australian   

Aborigine, all have an increased incidence of diabetes 

compared to the Caucasian population resident in these 

countries [1]. To optimize screening, detection and treatment, 

mobile screening combined with automated classification of 

disease can be used [2]. 

Automated assessment of pre-proliferative diabetic 

retinopathy has been possible for some time using fluorescein-

labeled images [3]. Results for color fundus analysis 

identifying microaneurysms, exudates and cotton-wool spots 

as well as proliferative retinopathy have only been reported 

more recently [4-6]. 

To optimize automated processing of color images one has 

to consider intra-image variation such as light diffusion, 

pathology, variation in fundus reflectivity and fundus 

thickness and inter-image variation (being the result of using 

different cameras, illumination, acquisition angle and retinal 

pigmentation). Several methods are available including grey 

world normalization, histogram equalization and histogram 

specification [7]. Color normalization also increases the 

discrimination in almost all of the color features [8]. 
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This paper proposes a process that does not require 

preprocessing but deals with image differences of the retinal 

fundus directly. The approach constructs a visual dictionary to 

represent important features that characterize the pathology of 

interest and uses pattern recognition tools to classify the retinal 

images into disease and non-disease. 

II. METHODS 

A. Diabetic Retinopathy Images 

For creating the visual words and training the detectors 

(two-class classifiers), 672 non-DR images, 261 images with 

bright lesions and 246 images with red lesions from the 

Ophthalmology Dept., Federal University of São Paulo, Brazil 

were used. The images came from patients with different racial 

background and were manually graded by specialists. The 

images ranged from 640×640 to 1,581×1,113 pixels in 

resolution. All of these images were used for creating the 

dictionaries and for training the two-class classifiers (normal 

vs. bright lesions and normal vs. red lesions). The aboriginal 

test images were obtained from the Albury Eye Clinic using a 

Topcon camera at 1,200×1,200-pixel resolution. Retinal 

images contained either no pathology, red lesions, or bright 

lesions.   

B. Detection of Features 

Every image in a collection is represented using a large 

number of points of interest (PoI) [9] and a local descriptor 

around each PoI using the Speeded-Up Robust Features 

(SURF) approach is calculated [10]. This is then stored in an 

indexing data structure. PoIs are robustly estimated as they 

convey more information than other points in the image. A PoI 

shows repeatability after several image transformations across 

different scales.  

The SURF algorithm has four major stages: 

(1) Feature point detection: this stage uses an Hessian 

detector approximation based on low-pass box filters (Haar 

filters) and integral images [11] to speed up the operations. 

(2) Feature point localization: The determinant of the 

Hessian for both location and scale is used. Given a point 

 in an image I, the Hessian matrix  in   at 

scale   is defined as follows 
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    (1) 

where  is the convolution of the Gaussian second 

order derivative with the image  in point . 

The scale-spaces are implemented as image pyramids by 

repeatedly smoothing the images with a Gaussian and 

subsequently sub-sampling to achieve a higher level of the 

pyramid. To localize the PoIs in the image across different 

scales, the method performs non-maximum suppression in a 

 neighborhood. The maxima of the determinant of the 

Hessian matrix are then interpolated in scale and image space. 

(3) Orientation assignment: SURF calculates the Haar-

wavelet responses in  and  directions using a circular 

neighborhood of radius  around the interest point, where 

 is the scale at which the interest point was detected. 

Fast filtering, in each scale , the method calculates wavelet 

responses using integral images. The dominant orientation is 

estimated by calculating the sum of all responses within a 

sliding orientation window covering an angle of . The point 

of interest gets the orientation from the longest vector. 

(4) PoI characterization: SURF creates a square region 

centered on the PoI, and oriented along the orientation selected 

in Step (3). The region is split up regularly into smaller  

square sub-regions. For each sub-region, the method computes 

some simple features at  regularly spaced sample points. 

 

Basically, Stages (1) and (2) gives the points of interest (PoIs) 

while Stage (3) assigns the orientation of each PoI and Stage 

(4) performs the description of each PoI.  

C. Visual Vocabulary 

The creation of the dictionary is outlined in Fig. 1. SURF is 

a good low-level representative feature detector with several 

applications in computer vision. However, SURF-based 

approaches are often designed to provide exact matching and 

they do not translate directly into good results for image 

classification in broad or even constrained domains. Therefore, 

we use the concept of visual vocabularies [12] to capture the 

high-distinctiveness of PoIs while using such discrimination 

for image classification.  

In the construction of a visual vocabulary, each region of 

PoIs becomes a visual “word” of a “dictionary”. In the 

following, we consider the problem of exudate detection for 

the sake of explanation. The approach we discuss in this paper 

is general enough to detect other DR-related anomalies as we 

show in Section IV and V.  

To solve the problem of detecting bright lesions in ocular-

fundus images, we select and create a database of training 

examples comprising training positive images with exudates 

and negative images considered normal by specialists. In this 

training stage, we perform the localization of the interest 

points in all available images using SURF. In this work, we do 

not perform any preprocessing on the images. 
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Fig. 1.General pipeline of the proposed approach.  

 

Each image in the training generates a series of points of 

interest. After finding the PoIs, the dictionary or codebook was 

created, which represents distinctive regions of the images 

with bright lesions as well as images tagged as normal by 

specialists. Our objective when creating a visual dictionary is 

to learn, from a training set of examples, a model that selects 

the more representative regions for our problem. The size of 

our dictionary must be large enough to distinguish relevant 

changes in the images and disregard irrelevant features.  

To create the “dictionary”, we need to choose its size , or 

number of representative words. During training, the 

specialists select regions of interest in the analyzed images and 

creating masks for candidate regions more likely to contain the 

DR anomaly of interest. The points of interest are then 

considered in these more likely DR regions. To create the 

dictionary, we can then perform clustering such as k-means for 

finding representative centers for the cloud of PoIs or simply 

pick PoIs within the specialist marked regions as we indeed do 

in this paper.  

A good dictionary is the one that captures properties of the 

DR anomaly of interest as well as properties of normal images. 

Therefore, we create the dictionary using 50 “words” 

representing the DR anomaly of interest (e.g., bright lesion) 

and 50 “words” representing normal retinas (non-DR) [12]. 

Note that in the training stage we used common images and 

not specific indigenous images.  

D.   Training and Classification 

 The visual dictionary was created from the training images, 

using the fine selection of candidate regions in normal and 

abnormal images, which the specialists marked. The selection 

process is only performed in the training stage. Once the 

dictionary was created, each of PoIs from the training set was 

assigned to the closest visual word of the dictionary. This step 

is known as quantization. At the end of the quantization 

process, a set of feature vectors representing the histogram of 
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the selected visual words for each image are obtained. The 

final classification procedure was performed using the Support 

Vector Machine (SVM) algorithm. The classifier was trained 

by adding the feature vectors calculated from the training 

images containing positive (e.g., images containing pathology) 

and negative (normal images) examples.  The parameters for 

the SVM were settled during training using SVM grid search. 

To analyze multiple pathologies, we can create different 

dictionaries (normal vs. bright lesions, normal vs. red lesions) 

and train different two-class classifiers that can be combined 

later using state-of-the-art machine learning classifier fusion.  

III. RESULTS AND DISCUSSION 

In this section, we present the results for our classification 

techniques based on points of interest and visual words. Fig. 2 

shows typical signatures for normal images vs. bright lesions.  

 

 
Fig. 2.Typical signatures for normal patients vs. patients with 

exudates. DR patients have higher frequencies for abnormal 

words (positions 1-50) while the contrary should happen for 

positions 51-100.  

 

The plot depicts 100 “words” and their frequency in the 

training set. For this research we chose to use 100 words as 

this number was found to be most efficient and effective for 

identification of lesions. Increasing the number of words 

normally gives higher responses and also increases the 

computational time. Thus positions 1-50 represent anomaly-

based words (e.g., exudates in this case) while positions 51-

100 represent words for normal regions (non-DR).  For 

positions 1-50, it is expected that the abnormal words 

dominate the normal words while the contrary should happen 

for positions 51-100.  

The typical signatures for bright and red lesions are 

calculated based on the training images. Given an unseen 

aboriginal image for testing, the process consists of calculating 

the points of interest in this image, and mapping such points to 

the proper visual dictionary (normal and with anomalies).  

Fig. 3 depicts two aboriginal images for bright lesions 

detection/classification.  

Fig. 3 (top) shows an example of a good characterization of 

an aboriginal image in which traces of bright lesions can 

clearly be seen. This is due to the dominance of the tested 

signatures with respected to the typical signature of a DR 

patient with bright lesions (higher frequencies in positions 1-

50). 

 

 

 
Fig. 3. Two examples of visual words characterization for DR 

aborigine bright lesions detection. Best characterization results 

(top) against worse characterization results (bottom).  

 

On the other hand, Fig. 3 (bottom) shows a bad 

characterization in which it is not possible to differentiate 

between a DR candidate for bright lesion since the signature 

found in the tested image does not dominate the typical 

signature for DR or normal patients. Fig. 4 presents similar 

results for red lesions. Fig. 4 (top) indicates that the tested 

image is a DR candidate for red lesion since its signature for 

positions 1-50 dominates the typical red lesions signature 

while for positions 51-100 the typical normal signature 

dominates. Fig. 4 (bottom) depicts an example in which the 

red lesions characterization is not as good and no clear 

conclusion can be drawn.  

This kind of analysis is very important to visualize what is 

happening in the feature level characterization of the analyzed 

images, but difficult to automate. Therefore, use is made of a 

typical machine learning classifier to learn such behaviors and 
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test unknown images. For this we selected an operational point 

in which false negatives, for instance, were penalized. 

 

 
Fig. 4. Two examples of visual words characterization for DR 

aborigine red lesions detection. Best characterization results 

(top) against worse characterization results (bottom).  

 

The classification then achieved promising results, correctly 

classifying about 80% of the aboriginal images from a training 

set of non-aboriginal images. The two-class SVM classifier 

with a radial basis kernel was used with class weighting during 

training to balance differences in the number of examples for 

normal, bright, and red-lesion images, and at the ROC 

operational point of 90% sensitivity and 80% specificity.  

This is an important result as it indicates not only that the 

method works on indigenous images but also that cross 

training has not reduced the accuracy of the procedure. Having 

a common approach which is robust to cross-training can be an 

important milestone in DR pathology detection research.  

IV. CONCLUSION 

The use of the visual dictionary is a robust method to learn and 

represent important features of a given anomaly even in the 

presence of noise and differences in color background of the 

retinal fundus in different populations.  

Ocular-fundus images were classified as normal or DR 

candidates using a cross-training methodology that was robust 

against differences in retinal fundus color and therefore easy to 

implement worldwide. In addition, the unified proposed 

approach allows us to develop different detectors under the 

same simple underlying characterization procedure allowing 

more than one lesion to be identified at a time therefore 

yielding better differentiation in terms of DR disease 

progression. As a future direction, we aim at investigating 

machine learning feature and classifier fusion techniques in 

order to combine different anomaly detectors toward more 

discriminative DR vs. Non-DR classifiers.  
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