
  

  

Abstract— The automated detection of diabetic retinopathy 
and other eye diseases in images of the retina has great promise 
as a low-cost method for broad-based screening.  Many systems 
in the literature which perform automated detection include a 
quality estimation step and physiological feature detection, 
including the vascular tree and the optic nerve / macula 
location.  In this work, we study the robustness of an automated 
disease detection method with respect to the accuracy of the 
optic nerve location and the quality of the images obtained as 
judged by a quality estimation algorithm.  The detection 
algorithm features microaneurysm and exudate detection 
followed by feature extraction on the detected population to 
describe the overall retina image. Labeled images of retinas 
ground-truthed to disease states are used to train a supervised 
learning algorithm to identify the disease state of the retina 
image and exam set.  Under the restrictions of high confidence 
optic nerve detections and good quality imagery, the system 
achieves a sensitivity and specificity of 94.8% and 78.7% with 
area-under-curve of 95.3%.  Analysis of the effect of 
constraining quality and the distinction between mild non-
proliferative diabetic retinopathy, normal retina images, and 
more severe disease states is included. 

I. INTRODUCTION 
N the United States of America, more than 25 million 

Americans have diabetes and this number is projected to 
increase to over 115 million by the year 2050 [1].  The 
growth of diabetes is not limited to the United States, as 
diabetic retinopathy (DR) is the leading cause of blindness in 
the industrialized world.  In recent years, several machine 
vision algorithms for detecting DR and other eye diseases 
have been developed (see for example [2-4] among others).  
These systems and algorithms could lead to inexpensive, 
broad-based screening for DR.  One example is the 
Telehealth Retinal Image Analysis and Diagnosis (TRIAD), 
a telemedicine network based in the Mid-South region of the 
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United States [5].  This system provides retina screening to 
diabetic patients in a primary care setting or walk-in clinics.  
State-of-the-art fundus camera available at the clinic are 
used to image the patient’s retinas.  These are submitted to a 
workflow process through a secure, HIPAA-compliant 
network and stored in a database.  Notification is sent to an 
ophthalmologist who prepares a recommendation for the 
general practitioner delivered via secure protocols.  While 
the system is currently functioning as a manual telemedicine 
network, greater levels of automation have been introduced.  
The initial automation was limited to a real-time quality 
measurement of the captured images [6].  Later automation 
included anatomical feature localization [7], and lesion 
detection [8-9], which will ultimately form the basis for a 
supervised disease stratification methodology based on 
content-based image retrieval (CBIR) [10].   We have also 
explored the impact of quality on disease detections using 
manually segmented lesions with our CBIR methodology 
[11], and investigated means of assigning a confidence to the 
optic nerve location using complementary methods [12-13].  
Our belief is that system performance can be improved by 
setting a threshold TQ on the quality of the images and optic 
nerve confidence TC such that examinations that exceed 
these thresholds are reliably detected by automatic methods, 
while examinations below these thresholds are best dealt 
with by human screeners (see Figure 1 for an illustration of 
this process).  In this work, we use the quality estimation 
algorithm and optic nerve location algorithms to determine 
the impact of these thresholds on disease detection using 
data collected from February 2009 to January 2011 with the 
TRIAD system.  We first briefly discuss the quality metric 
and optic nerve detection confidence metric.  We then show 
the system performance as we vary TQ and restrict analysis 
based on TC.  We conclude with some observations on 
performance and future paths for development. 
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II. APPROACH 

A. Quality Assessment 
The image acquisition phase is currently performed by a 
technician in the clinical setting.  After image capture, a 
measurement of the image quality is performed.  The 
TRIAD system uses the elliptical vessel density or ELVD 
method [6].  This method was designed for computational 
efficiency and thus is well-suited for this application, giving 
quick feedback.  In the method, the image undergoes a 
segmentation of the vascular tree based on the method of 
[14], which uses morphological processing to emphasize 
vessel-like structures.  After the segmentation, which is 
preserved for additional processing, the image is divided into 
spatial regions.  In each region a measurement of the density 
of the vessels is made, in addition to a measure of the overall 
color of the retina image.  A supervised support vector 
machine classifier delivers a quality estimate ranging from 0 
to 1 which was trained with example images labeled as 
“poor”, “fair”, and “good” quality.  Any images which fall 
below a threshold (set empirically to 0.40) are judged 
insufficient quality.  There is an empirical correlation 
between the quality level assigned by the currently trained 
ELVD method and the actual human perceptual quality, but 
the exact relationship is not well-defined.  Thus, we have a 
fundamental question regarding the quality: what level is 
sufficient for accurate disease diagnosis?  Intuitively, it 
would seem that higher quality thresholds would produce 
better results at the cost of more manual screening.   

B. Optic Nerve Detection 
The detection of anatomic structures, particularly the optic 

nerve and macula, are fundamental to the subsequent 
characterization of the normal or disease states that may 
exist in the retina.  These structures establish a sort of 
coordinate system of the retina.  Optic nerve detection is 
fairly mature field and there are many different methods that 

have been applied to a wide variety of data sets (see, for 
example, [7,18-21]).  In our research we have developed a 
method which relies on a good quality segmentation of the 
optic nerve [7] which we will identify as the “feature based 
likelihood ratio” or FBLR.  In this method, the segmented 
vascular tree is used and local measurements of the vessel 
density, orientation, and thickness are made.  These features 
are combined with a brightness measure to compose a four-
dimensional feature vector for each pixel.  A library of 
training images is used with manually labeled ONs and 
maculae.  Pixels within an average radius of the ON are used 
to compose an “optic nerve” training set with other pixels 
sampled to compose a “non-optic nerve” training set.  A 
Gaussian model for both regions is formed with the training 
vectors.  In addition, the manually labeled ON centers are 
used to form an a priori estimate of the ON center 
probability density function (pdf).  The Gaussian parameters 
and the pdf are used to compute a likelihood ratio function 
using maximum a posteriori  (MAP) estimation, and the 
pixel of highest likelihood is identified as the optic nerve.  
The macula is then found by modeling the vascular tree as a 
parabola, with the macula assumed to lie at a fixed distance 
from the ON at the angle indicated by the parabolic fit.  

In earlier work [15] we compared the performance of the 
FBLR classifier with a model-based method [7] and 
explored the utility of fusing the methods to produce an 
optic nerve confidence metric [12-13].  To create the model, 
a group of optic nerves were manually segmented by non-
clinical researchers.  The images were resized to a common 
scale (the median size of the set), then resized to quarter size 
for computational efficiency.  The images were rasterized 
into column vectors and projected using the small-sample 
size variation of principle component analysis (PCA) [16].  
An additional data set taken from a later period of time was 
used to train a supervised classifier using neural networks to 
distinguish between optic nerve pixels and non-optic nerve 
pixels using the principle components as features.  This 
differs somewhat from our earlier work which used a linear 

 
Figure 1.  Overview of robustness study for automation in telemedicine network.  After quality assessment, images which exceed a threshold TQ 
undergo optic nerve locatlization using complementary methods.  When the distance between the detected locations p and f is less than some threshold 
TC, automated detection is performed.  Any examinations failing these tests are reviewed by the ophthalmologist. 
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discriminate analysis (LDA) approach.  The training samples 
were chosen from the optic nerve region and non-optic nerve 
regions at random, with the exception in the case of images 
where the FBLR method was shown to give an error; these 
erroneous regions were chosen as non-ON examples to help 
direct the training away from regions where the FBLR 
method had difficulty as discussed in [12].  The classifier 
was applied to test images by classifying each individual 
pixel and the neural network (NN) output was then 
convolved with a smoothing filter of the same size as the 
ON.  The confidence metric was created by measuring the 
Euclidean distance between the locations determined by the 
two methods.  When they were less than some threshold 
apart, a high confidence was assigned to the detection. 

C. Disease Detection and Classification 
For this work, we do not investigate the potential use of a 

confidence metric associated with the disease classification, 
but since this processing is our main means of evaluating the 
quality and optic nerve confidence metrics, we include a 
description of our processing in this area.  Two main lesions 
or anomalies are currently detected with the system: 
exudates (small lipid deposits with a bright yellow color and 
distinctive spatial distribution) and microaneurysms 
(dilations of a small retinal capillary vessel, producing a 
small round dark spot in the vicinity of a capillary vessel.)  
The system uses specific detectors designed for these defects 

as detailed in [8-9]. The detectors produce candidate regions 
of interest which are likely positive examples of each lesion.  
While these detectors were designed to provide good lesion 
detection without post-processing, we use supervised 
learning to separate the candidates into “true lesions” and 
“nuisance blobs”.  Both detectors generate candidate blobs 
which are filtered into “true lesions” and “nuisance blobs” 
using neural network classifiers trained on a set of ground 
truth lesions.  The detected, filtered lesions create an overall 
fundus description that consists of a measurement of features 
related to the lesions detected (such as the number detected, 
histograms of the sharpness of the lesion edges, shape 
properties, etc.), the vascular density within the lesion 
population, population moments, and textural features of the 
macula region.  This vector, which we refer to as the 
“population vector”, is used to determine an index that can 
be used to locate similar images in an archive which then 
generates an automatic detection of disease by analysis of 
the ground-truth disease states of the similar images.  We 
use PCA to reduce the dimensionality of the features space 
to a more efficient and effective search space, followed by a 
classification using a kNN classifier [17]. 

III. EXPERIMENTS 
In this section we describe the experimental results using 

data from the telemedicine network.  Some background on 
the data set is provided, and we then describe our validation 
process.  We then present the results of the optic nerve 
confidence metrics on this data set, and finally we present 
the disease classification results on the quality confidence 
thresholds and optic nerve confidence methods. 

A. Data Set 
As of March 2011, there are five clinics in TRIAD based 

in Tennessee, North Carolina, and Mississippi.  The 
examinations used span a roughly two-year period from 
February 2009 to January 2011.  All images were collected 
with Zeiss VisuCamPro fundus cameras, in color with a 
roughly 6 microns per pixel resolution.  Roughly 75% of the 
images are 45 degree field of view and 25% 30 degree field 
of view.    The data set contains 5218 images obtained from 
2378 patients over 2656 examinations; thus some patients 
are return visitors, with multiple examinations.  
Approximately 65% of the patients are African-American 
and 30% Caucasian. 

The initial development of the optic nerve detectors and 
quality estimators, including testing, were performed on an 
early group of 1051 images from between February 2009 
and March 2010.  We refer to these as the “core set”.  The 
subsequent experiments described here do not include these 
images for classification studies, although they are used as 
part of the training dataset for the disease classification. 

 

 
Figure 2. Top: Examples of cropped optic nerves.  Bottom: Top 10 
principle component eigendisks. 
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Figure 3. Examples of failed optic nerve detections.  The ground truth value is in blue while f is the green cross and p is the red star.  Top, left to right: 
missing optic nerve; partial optic nerve; flash artifacts.  Bottom, left to right: Diseased retina; missing optic nerve; macula location incorrect (left eye 
identified as a right eye).   

   The disease state in the dataset is 83% normal / no 
diabetic retinopathy, 9% “mild DR without clinically 
significant macula edema (CSME)” and “mild Age-related 
Macular Degeneration (AMD)”, and 8% consisting of more 
severe disease.  These latter were grouped together into the 
“abnormal” or “positive” category for classification 
purposes, and the normal were grouped with mild DR and 
mild AMD into a “normal” or “negative” category.  We wish 
to point out that this grouping may be problematic long term, 
but we justify this approach in this work since all these 
conditions share the same recommendations (6-month 
follow-up visit). 

As a final note, our examinations are analyzed on a per-
patient basis, using the physician diagnosis for the worse 
disease state of both eyes as ground-truth. In the case of 
patients who have been imaged by the system multiple 
times, we hold out all images of the patient when performing 
the classification of that patient, but only the earliest exam in 
the data set is classified.  Finally, for each hold-one-out test, 
the training set consists of all images from the remaining 
patients, regardless of their frequency of examinations. 

B. Optic Nerve Confidence Metric 
The earliest 568 images from the “core set” were 

manually segmented by non-clinical researchers.  The 
images were resized to the median size of 328 pixels square 
and the resulting images were resized to quarter size for 
computational efficiency.  Some examples are shown in 
Figure 2.  The PCA projection contained 90% of the energy 

in the first 10 components.  We chose the 10 component 
option as our earlier work used the 90% threshold; however, 
we note that in this data set, we used much fewer 
components which may be due to the more normal 
appearance of most of these images as opposed to the data 
set of [15] which was from an ophthalmology practice as 
opposed to a screening environment.  The eigendisks are 
also shown in Figure 2. 

We then took the remaining images of the core set to 
create a training set for the ON detection neural network 
classifier. The optic nerve region was chosen and every 
fourth pixel was sampled as an example of an optic nerve.  
The remaining pixels were chosen by taking the region of 
lowest reconstruction error, choosing that pixel, removing 
pixels within one ON diameter of that pixel, and repeating 
using the next lowest reconstruction error.  The data set thus 
consisted of two roughly equal numbers of ON pixel and 
non-ON pixel, each with a 10-dimensional feature vector.  
The resulting neural networks were trained using mean-
square error and two hidden layers of 20 neurons each with 
the MATLAB© NN toolbox.  After training the NNs, the 
optic nerve was located in a test image by classifying each 
individual pixel, then convolving the NN output for optic 
nerve targets with a smoothing filter of size 82 pixels square 
(the size of an ON).  The position of peak response was 
chosen as the ON location.  The two-fold validation test 
results were compared to the FBLR results and the 
Euclidean distance between the two estimates were 
measured.   In the 2-fold test 99% accuracy was achieved 
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with ON differences of one ON diameter at a cost of 5% 
images rejected.  A correct detection was interpreted as one 
where the estimated ON location was within one ON radii of 
the ground-truthed value.  We therefore used this target as 
the ON detection threshold.  We next tested the performance 
of the ON confidence metric on the remaining images after 
the core set.  In this test, the accuracy at that distance 
threshold was slightly less at 98.6% but also with 5% images 
rejected.  Some examples of images which are rejected are 
shown in Figure 3.  In many cases artifacts or a missing ON 
are the primary issues. 

C. Confidence Thresholds on Disease Detection 
The quality confidence was evaluated by observing all 

image pairs (right eye / left eye) which passed a quality 
threshold TQ varying from 0.4 to 0.9 in 0.1 increments.  
Each unique patient in the evaluation set was then evaluated 
on a “hold-one-out” basis, where all images from a patient 
were removed and the remaining images were used to form a 
training set.  The feature dimension was reduced by using 
PCA with components selected to capture 80% of the signal 
energy, then the held-out exam was classified with a kNN 
classifier using K=67.  A Receiver Operating Characteristics 
(ROC) curve was generated by increasing the weight of an 
abnormal vote, and the area under the ROC curve (AUC) 
was computed.  At each threshold TQ, the number of 
candidate exams (with two images over the quality 

threshold) was computed as well and normalized by the 
maximum number possible (the number of exams with two 
images of quality 0.40 or greater).  In addition, the optic 
nerve confidence metric was computed as described earlier, 
and an addition set of ROC curves were generated by 
applying this screening. In Figure 4, we show the AUC as a 
function of the TQ and the number of exams screened as a 
function of TQ.  The fraction screened drops almost linearly 
for both non-TC and TC cases, from 100% screened to 40% 
for the former and 80% to just fewer than 40% for the latter.  
The TC cases all perform better than no TC by approximately 
1%.  However, as a function of quality, we see an increase in 
performance as TQ increases up to 0.6 but then actually 
drops for higher values. 

We examined the false negatives and false positive results 
for TQ = 0.6 with optic nerve confidence filtering. We 
selected the parameters which delivered a 94.8% sensitivity 
and 78.7% specificity.  In this case there were a total of 610 
exams, with 109 false positives and 5 false negatives.  Two 
of the false negatives were AMD level 2, one was AMD 
level 3, one was mild DR with CSME, and one was 
moderate NPDR without CSME.  We note that a drusen 
detector would likely improve the performance on the AMD 
images. 

D. Discussion of Results 
The overall detection performance is quite good from the 

standpoint of identifying serious disease conditions (those 
requiring immediate attention from an ophthalmologist.).  
We note however that the differentiation between normal / 
mild NPDR-CMSE, and mild NPDR-CMSE and more 
severe diagnosis is not as clear-cut.  In a system which is 
being used with patients who are under regular screening, 
such as TRIAD, these distinctions may not be as important.  
If the system is intended to truly identify early disease, more 
importance should be attached to this issue.  As a point of 
reference, if mild NPDR-CSME were treated as desired 

 

 
 
Figure 4 Top: Performance (based on AUC for disease detection) as TQ is 
varied, for application with TC (■) and without TC (●). Bottom: The 
fraction of exams screened for these cases.   

Figure 5.  Prevalence of disease in database as quality changes: Normals (▲), 
Mild NPDR-CSME and Mild AMD (■), and more serious disease(●). 
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positive result, the system would perform with 77% 
sensitivity and 74% specificity; if mild NPDR-CSME were 
treated as a desired negative result, the performance is 
91.8% sensitivity and 73.6% specificity.  The latter result is 
greater most likely because the system was trained in this 
fashion with the kNN classifier. 

Another rather unusual finding is the drop in performance 
as the quality threshold is raised, which is counter to 
intuition and our previous work [11].  Additional analysis of 
the images indicates that as the quality declines, a smaller 
percentage of the images in the datasets are of category 
normal as shown in Figure 5.  This suggests that our 
methodology benefits more from the inclusion of more 
examples of normal retinas than abnormal, but further 
analysis is needed which is beyond the scope of this work.  
The result of the ON confidence filtering was more intuitive, 
as the use of the filter improves performance by removing 
more false positives.  This is likely because images that 
satisfy the ON confidence metric are less likely to show 
false positive lesion detections from the typically brighter 
areas around the optic nerve. 

IV. CONCLUSION 
In this work we evaluate two confidence metrics, for 

quality and optic nerve detection to determine the effect of 
these constraints on overall classification of disease in retina 
images from a telemedical network.  We note the optic nerve 
detection confidence metric could be applied to different 
optic nerve detection methods that use different or 
complimentary characteristics for the detection.  Future 
work involves using larger data sets with hopefully more 
complete non-image data, as roughly 40% of the 
examinations did not have sufficient non-image data for 
inclusion. We hope to ultimately incorporate a more detailed 
disease stratification estimation which extends beyond the 
normal / abnormal type of detection described here.  We 
would also like to investigate adding additional detectors to 
the lesion detection process, exploring other filtering 
techniques and thresholds, and the impact of additional non-
image data as it is available.  
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