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Abstract— Automatically tracking and analyzing the mobility
of live subcellular structures will expedite the understanding
of signaling pathways, protein-protein interaction, drug deliv-
ery, protein synthesis and functionality. Traditional computer
vision tracking methods produce yet-to-be-satisfactory results
due to the complexity of the particles recorded in spatial-
temporal video sequences from confocal images. The difficulties
arise from diverse modalities of motion patterns (translational,
Brownian, or sessile), changes in behavior during tracking, and
cluttered background. In this paper, we present an effective
framework to detect and track subcullular particles in different
motion modalities. The methodology begins with a Divergence
Filter design for motion modality detection. After that, an
improved á trous wavelet is presented for segmenting parti-
cles. Represented by Euclidean Distance Map which contains
information on object position, size, and intensity, the multiple
particle tracking is carried out by solving a linear assignment
problem. The proposed framework can also simultaneously
evaluate particle population change by automatically counting
the number of newly appeared or disappeared particles in time
space.

Index Terms— Divergence Filter, subcellular structure, par-
ticle detecting, tracking, confocal microscopy

I. INTRODUCTION

Understanding the mobility of subcellular particles like
organelles, vesicles, or mRNAs is critical to understand
how cells regulate delivery of specific proteins from the
site of synthesis to the site of action at subcellular level.
The knowledge of regulation and how it is deranged in
various diseased or malfunctioned states will eventually
lead to a better understanding of such diseases as diabetes,
hypercholesterolemia, and many viral infections.

In order to fully understand the details of these essential
processes, it is necessary to track the behavior of individual
particles and to gather statistics about their mobility. Fortu-
nately, many types of particles can be visualized specifically
by tagging them with fluorescent marker proteins [1]. Mod-
ern microscopes permit the acquisition of high-speed time-
lapse movies showing the behavior of the entire population
of tagged particles simultaneously [2]. At least three types
of particle behavior are evident in these movies: sessile
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vibration, Brownian, and unidirectional transport. Over time,
any individual particle may switch between these three types
of behavior. A first step toward understanding the stimulus
and mechanism of behavior switching requires cataloging the
trajectories of the entire population of particles. This cannot
be done interactively, as the movies often contain over 1,000
particles per frame. The purpose of this study is to develop
an algorithm for segmenting the particles and tracking them.

The complexity of subcellular dynamics poses challenges
and makes the the Point Spread Function (PSF) ([3], [4])
based approaches not directly applicable here. Also, tracking
multiple particles at the same time brings in fundamental
difference from one single particle in terms computational
complexity and approaches [5].

We define the sessile vibrates as regular motion, vice versa,
the Brownian and unidirectional translation as irregular mo-
tion. In this paper, we will present a flow of algorithms for
detecting and tracking subcellular particles. Our framework
starts with motion modality detection by a divergence filter
followed by a wavelet based particle segmentation. Features
of particles of interests are selected and a score matrix is
defined. In the end, the particles are tracked by solving a
linear assignment and pairs linking problem.

II. METHODOLOGY
A. Particle Detection and Segmentation

To find irregular motion particles among regular ones, we
developed a divergence filter [6], by which vibrating motion
within a region W may be canceled out, whose property can
be used as a measure of regularity and irregularity in W .
The negative and positive K values, displayed in Fig. 1a,
are obtained from two sequential frames, t and t+1. The K
values actually represent the disappearing particles in frame
t and appearing particles in frame t+ 1, respectively.

To detect the irregular motion particles, we need to detect
those black and white spots in K-image, which needs an
appropriate image segmentation technique. These spots usu-
ally have large areas but with low intensity. Thresholding
methods based on pixel intensity [7] tend to miss the
relatively low intensity large area spots and only keep high
intensity ones even for noisy spots. Therefore an effective
segmentation method should consider the size of the spots
as well as individual pixel intensity.

We improved á trous wavelets as the segmentation method
[8]. The convolution of K-image and the B3-spline kernel
[1/16; 1/4; 3/8; 1/4; 1/16] is computed through row by
row, followed by column by column J times, where J =
⌊log2(x − 1)⌋ − 1, and x is the minimum of image width
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and image length. This operation equals to convolution with
an isotropy 2D kernel. The original K-image is defined as
K0(x, y, t) and the separable convolution gives a smoothed
approximation K1(x, y, t), from which the wavelet plane
D1(x, y, t) is defined. In general, we have,

Di(x, y, t) = Ki(x, y, t)−Ki−1(x, y, t), (1)
Di(x, y, t) = Di(x, y, t)/max

x,y
(|Di(x, y, t)|), (2)

with i = 1, 2, · · · , J . Let:

QJ(x, y, t) =

J∏
i=1

Di(x, y, t), (3)

Figure 1b shows the binary image result by thresholding
QJ(x, y, t). The assumption is if point (x, y) is the center of
a large area, its Di(x, y, t) will not easily be zero after the ith
iteration, and QJ(x, y, t) will not be zero; but if point (x, y)
is a small noisy area, even with high intensity, its Di(x, y, t)
will easily become zero, and QJ(x, y, t) will be zero.

Here the normalization of Di(t) is added in each iteration
in Eq. (2) due to the large difference among K(t) values.
With this normalization, a single threshold of QJ(x, y, t) for
different t becomes possible.

Frame 108 to 109

(a) Zoomed-in K image

Frame 108 to Frame 109

(b) segmentation result

Frame 108 to Frame 109

(c) representing

Frame 108to Frame 109

(d) matching

Fig. 1: (a) For the purpose of visualizing K value, we set the
image intensity of the point with K(x, y, t) = 0 as 128, so
after normalization, the positive and negative K values are
shown as white and black spots; (b) result of using á trous
wavelets segmentation to (a); (c) The center of the square is
the center of spots, and the spot size is approximated by an
area of the square. (d) result of matching black and white
spots in K-image.

B. Particle Feature Extraction

Assuming I(t) is the tth image in the sequence, K(t)
is the K-image from I(t) to I(t + 1). Suppose there are
m black spots and n white spots in K(t). The Euclid-
ian Distance Map (EDM) of K(t) is E(t) = {Ei,t|i =
1, 2 . . .m + n}, Ei,t is the EDM of spot i. Vector sets
B⃗t = {B⃗i,t|B⃗i,t = [xB⃗i,t

, yB⃗i,t
, ri,t]

T , i = 1, 2 . . .m} and
W⃗t = {W⃗j,t|W⃗j,t = [xW⃗j,t

, yW⃗j,t
, rj,t]

T , j = 1, 2 . . . n}
are used to represent each black and white spot, in which
(xB⃗i,t

, yB⃗i,t
) and (xW⃗j,t

, yW⃗j,t
) are the position of the local

maximum distance (LMD) value for the black and white
spots, respectively, and ri,t or rj,t is the local maximum
distance value of B⃗i,t or W⃗j,t. The representation result is
shown in Fig. 1c.

In the K-image, if one black spot B⃗i,t and one white spot
W⃗j,t are close enough with similar size and image intensity,
we say B⃗i,t and W⃗j,t are probably one particle moving
from (xB⃗i,t

, yB⃗i,t
) in I(t) to (xW⃗j,t

, yW⃗j,t
) in I(t + 1).

We call this matching between B⃗i,t and W⃗j,t black-white
pairing. Similar to [3], this matching problem is modeled
as a linear assignment problem, using a cost matrix C(t) =
{pi,j,t|i, j = 1, 2 . . .m+n} to record the costs of all possible
black-white pairing and the penalty of no pairing (Fig. 2).
The upper left block of C(t) is defined as:

P (t) = {pi,j,t = α1d̄i,j,t + α2∇S̄i,j,t + α3∇κ̄i,j,t}, (4)

where {i} = {1, 2 . . .m}, {j} = {1, 2 . . . n}. With

d̄i,j,t =
di,j,t −mini,j(di,j,t)

maxi,j(di,j,t)−mini,j(di,j,t)
, (5)

which is the normalized distance between spots i and j, with
di,j,t is the Euclidean distance between spot i and spot j. We
define,

∇S̄i,j,t =
∇Si,j,t −mini,j(∇Si,j,t)

maxi,j(∇Si,j,t)−mini,j(∇Si,j,t)
, (6)

which is the normalized size difference between spot i and
spot j with ∇Si,j,t = |r2i,t − r2j,t|. We further define,

∇κ̄i,j,t =
∇κi,j,t −mini,j(∇κi,j,t)

maxi,j(∇κi,j,t)−mini,j(∇κi,j,t)
, (7)

which shows the normalized difference of summation of K
values in black spot i and white spot j with ∇κi,j,t = κi,t−
κj,t and κi,t =

∑
(x,y)∈i(x, y, t) is the summation of K

values in spot i. In Eq. (4),
∑3

i=1 αi = 1 and αis are weight
coefficients for each item.

For no-matching spots, the costs are b(t) and w(t), respec-
tively, which are shown in the diagonal of the upper right and
lower left block (Fig. 2). Thresholds are used to stop pairing
two dots for the impossible situation such as far distance
or large size difference, and x in Fig. 2 represents those
situations. To make up the whole matrix C(t), the lower
right block is filled up with P (t)T .
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C. Particle Matching and Linking

With the cost matrix C(t), we need to find the optimized
solution path At:

min
m+n∑
i,j=1

(pi,j,tAi,j,t), (8)

where At = {Ai,j,t|i = 1 · · ·n + m, j = 1 · · ·n + m} is
assignment matrix with entries 0 (no match) and 1 (match),
and m+n∑

i=1

(Ai,j,t) = 1 and
m+n∑
j=1

(Ai,j,t) = 1. (9)

By using Hungarian Algorithm, we find the optimized
solution of Eq. (8), which is the black-white pairs with the
minimum global costs (Fig. 1d).

Fig. 2: Ct: Score matrix of black-white pairing and no
pairing.

The motion trajectories of the particles are acquired by
connecting the black-and-white pairing spots between K
images. The decisions are made for different cases:

If Ai,j,t = 1, but no W⃗j,t−1 has the same position with
B⃗i,t, then B⃗i,t is the start of a new track and W⃗j,t is the
second point along the track;

If Ai,j,t−1 = 1 and Ai,j,t = 1, and (xW⃗j,t−1
, yW⃗j,t−1

) =

(xB⃗i,t
, yB⃗i,t

), then (xB⃗i,t−1
, yB⃗i,t−1

), (xW⃗j,t−1
, yW⃗j,t−1

),
(xB⃗i,t

, yB⃗i,t
) and (xW⃗j,t

, yW⃗j,t
) belong to the same particle

track;
If Ai,j,t−1 = 1, but no B⃗i,t has the same position as

W⃗j,t−1, then W⃗j,t−1 is the end of the track.
Also consider that in the end of particle representa-

tion part, we remove the redundant LMDs, which may
result in that W⃗j,t−1 and B⃗i,t represent the same spot,
(xW⃗j,t−1

, yW⃗j,t−1
) ̸= (xB⃗i,t

, yB⃗i,t
), but some position near

B⃗i,t. So we extend the range of (xW⃗j,t−1
, yW⃗j,t−1

) and
(xB⃗i,t

, yB⃗i,t
) when pairing W⃗j,t−1 and B⃗i,t.

III. EXPERIMENTAL RESULTS

To test the effectiveness of our method, we developed
experiments reflecting time-lapse sequences of cells express-
ing caveolin 1-GFP. The video images were taken with a
Leica TCS-SP1 laser scanning confocal microscope with a

Fig. 3: Zoom-in original image cut from frame 4 to frame
11.

Fig. 4: Zoom-in matching results and trajectory from frame
4 to frame 11.

100x objective lens. The frames are of size 512× 512 with
a time interval of 1.2 sec, and the total number is 220.
The frames can be found in http://biolab.uta.edu:
8080/tools.htm/.

For better visualization, the zoomed in images of certain
regions that have irregular motion particles are shown. An
irregular particle with directed motion from top left to bottom
right is observed from frame 4 to frame 11 (inside the red
boxes in Fig. 3). Figure 4 shows the matching results of the
K-image as well as a tracked particle trajectory.

Another example is given from frame 108 to frame 121.
We observed the particle stops moving in three frames (114-
116) during the long distance trajectory. Actually this kind of
temporary suspending situation is not unusual for irregular
motion particles. In order to obtain the whole trajectory of
this kind irregular motion, we did the optimized matching
between small trajectories considering the distance between
trajectories’ start points and end points as well as the
directions of them. The matching results are shown in Fig. 6.

IV. DISCUSSION

Subcellular particle tracking and motion analysis are criti-
cal for cell dynamics study, which is closely related to diverse
biomedical applications. In this paper, we proposed a particle
tracking framework that can effectively detect, segment, and
track multiple particles in directed or Brownian motion in
live cell environments. The theoretical contributions of this
paper come from several aspects which includes an object
segmentation by developing the á trous wavelet, forming the

5975



Fig. 5: Zoomed-in original image cut from frame 108 to
frame 121.

Fig. 6: Zoomed-in matching results and trajectory cut from
frame 108 to frame 121.

feature score matrix for particle matching and tracking by
solving a linear assignment problem.

For the future work, we intend to evaluate the matching
accuracy by incorporating human-in-the-loop and the forma-
tion of a scoring matrix.
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