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Abstract— Cell segmentation is a crucial step in many bio-
medical image analysis applications and it can be considered
as an important part of a tracking system. Segmentation
in phase-contrast images is a challenging task since in this
imaging technique, the background intensity is approximately
similar to the cell pixel intensity. In this paper we propose an
interactive automatic pixel level segmentation algorithm, that
uses temporal information to improve the segmentation result.
This algorithm is based on the max-flow/min-cut algorithm
and can be solved in polynomial time. This method is not
restricted to any specific cell shape and segments cells of various
shapes and sizes. The results of the proposed algorithm show
that using the temporal information does improve segmentation
considerably.

I. INTRODUCTION
Analysing cell shape and motility is an important process

in medical and biomedical studies because most active cel-
lular functions involve change in shape and movements [1].
Manual observation and analysis of cellular images and data
sets is a tedious and error prone task. Therefore designing
a reliable automatic cell analysis system could considerably
ease the burden of this process for biologists. In almost all
automated systems, cell detection is a key process, and a
reliable cell segmentation system is a crucial module in a
cell tracking system.

Among many imaging techniques that are used in mi-
croscopic imaging, the two common ones are fluorescent
and phase-contrast imaging. In fluorescent imaging, cells
are first stained and then tagged by a fluorescence dye.
In these images, the cell’s nucleus is completely vivid,
but the cytoplasm and cell boundaries are not clearly vi-
sible [2], [3]. Therefore, these images do not necessarily
reflect the shape of the cell [4] and are not appropriate
for applications where exact cell boundaries are needed. An
alternative imaging technique is phase-contrast, which makes
it possible to examine living cells without any staining or
fixation prior to imaging [5]. Although phase-contrast images
contain both cell nucleus and cytoplasm, poor image quality
makes the segmentation task more complex in comparison
to fluorescent images.

The most common approach in cell segmentation consists
of thresholding, edge detection and morphological operati-
ons, which are often applied on the cell nucleus [6], [7],
[2]. These methods work well when there is a uniform
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Fig. 1. (Top left) sample image of phase-contrast microscopy, (top right)
result of the rolling-ball operation on the same image with cells appearing
as white regions, (bottom image) effect of Otsu thresholding on the rolling-
balled image.

pixel distribution, which is not the case in phase-contrast
images, therefore they are much more effective in fluorescent
images. Another widely used technique is active contour [2],
[8], [1], which tries to minimize the energy function and
evolve a model to fit a cell shape. Although the results of
this method are remarkably good, they suffer from being a
local optimization [9] and are based on strong cell structure
assumptions [10]. An alternative method is to use statistical
estimation and employ a Bayesian framework to train clas-
sifier(s) on a number of training images. To assign a label
(cell/background) to pixels of the input image, it calculates
the maximum a posteriori (MAP) probability of each pixel
being either a cell or background [11], [12]. In a different
approach Bradbury and Wan presented a segmentation algo-
rithm using the normalized cut and spectral clustering [3]. In
their approach, after computing the smallest eigenvalues of
the Laplacian matrix, the k-means algorithm is used to group
the pixels. A major drawback of this method is that spectral
clustering does not specify the type (background/cell) of the
clustered segments, therefore the authors suggest different
approaches such as applying active contours on the bright
field image or to use fluorescent image of the cell if available.

All the aforementioned algorithms have the problem of
not being modifiable directly by the biologist as they require.
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Graph cut algorithm has also been used for cell segmentation
in florescent images by Lesko et al [13] and Danek et al
[14]. Lesko et al’s algorithm uses gradient information in
the energy function of the graph cut but requires the user
to identify a set of points as background/cell. Danek et al
suggest the use of the image gradient in the boundary term
of graph cut and impose hard constraints on the regional
edges after applying thresholding.

In this paper we propose a pixel level cell segmentation
algorithm that does not require preprocessing and does not
depend on specific cell type or shape. In our approach, we
employ the interactive graph cut [15]. In contrast to the origi-
nal graph cut, which requires manual settings. The proposed
method is fully automated while making it possible for the
user to correct the results of the algorithm. To make the
segmentation even more precise, the temporal information of
the cells present in video microscopy is exploited. In what
follows we first give a brief description of the general graph
cut algorithm and how it can be employed in single frame
image segmentation. In section II-B, calculating the graph
weights from a training image is described, which is the
required step to make the segmentation automatic. Next we
extend the single frame segmentation and show how temporal
information of cells in video microscopy can be incorporated
in the algorithm to improve the segmentation results. An
overview of the method appears in Fig.2. We justify our
method by providing experimental results.

II. METHODOLOGY

Graph cuts are based on combinatorial optimization and
can be computed using the max-flow/min-cut algorithm in
polynomial time [16]. The original interactive graph cut
algorithm requires the user to specify some pixels (seeds)
as background pixels and others as foreground pixels. These
seeds are then used to impose hard constraints and the
similarity of image pixels to background/foreground pixels is
estimated. As we want to minimize user interaction and make
the process automatic, we propose to estimate the seeds from
a training image. The training image should discriminate
cell regions from background regions well. An approximate
discriminating image may be computed using the method
suggested by Li and Kanade [1], where the rolling-ball
morphological operation is applied on the inverted input
image. The cells in the resulting image would appear as
white shapes; see Fig.1. In order to obtain the binary image
from the rolling balled image, Otsu thresholding is applied.
The resulting image roughly indicates the cell locations. The
next step is to calculate the histogram of the cells (hc) and
the background (hb) using the binary image as mask. To
classify the pixels of a new image, a graph G is created
from the image and graph cut is calculated. The calculated
histograms (hc,hb) are used for estimating the weights of
graph edges and they indicate the similarity of each pixel to
the background/cell regions as a soft constraint. As contrast
and brightness do not vary significantly across the frames
in consecutive video microscopy, it is adequate to calculate

Fig. 2. Methodology

the histograms only once on the first frame and the same
histograms maybe used for the other frames.

A. Pixel classification using graph-cut

Consider a connected undirected graph G = 〈V,E〉, in
which V is a set of vertices and E is a set of edges with
weights (w > 0). The graph has two special terminal nodes,
source S associated with the foreground (in our case cells)
and sink T which represents the background region. A cut on
the graph (G(C) = 〈V,E \C〉) is defined in such a way that it
completely separates the terminal nodes and minimizes the
following [15]:

minimize|C|= ∑
e∈C

we (1)

In combinatorial optimization problems, often the cost of
a cut is defined as the sum of the costs (weights) of the
edges in that cut. Graph cut reduces the energy minimization
problem to the max-flow/min-cut optimization problem. To
use graph cut in image segmentation, each pixel is considered
as a node in the graph. For each node two types of edges
are created, the edges that connect the node to the terminal
nodes (et ) and the edges that connect each node to its N8
neighbours(er). The weights on terminal edges (et ) specify
the regional property of each pixel and show similarity of
each pixel to the background and cell region. The weights on
the (er) edges specify the boundary property of the pixel and
avoid discontinuities between pixels with similar intensities.
These weight values could be interpreted as cost functions,
with the former penalizing the dissimilarity of each pixel
to the terminal nodes and the latter keeping the boundary
continuous.

B. Weight estimation

Boykov and Jolly [15], use the intensity histogram of
the user’s defined regions (hard constraints) to estimate the
regional penalty (weight on et ) of pixels elsewhere. However,
in automatic segmentation there is no certainty for any
region, and no hard constraints can be defined. Therefore
we suggest the following energy functions for pixel X :
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Fig. 3. (Top) is the original image, (bottom) after applying graph cut

wX ,s =− ln(
hc(IX )

hc(IX )+hb(IX )
)

wX ,t =− ln(
hb(IX )

hc(IX )+hb(IX )
)

(2)

Recall from the earlier that hc(IX ) and hb(IX ) are the nor-
malized values of the learned histograms of the cells and
background regions at position X on the training image. To
penalize the discontinuities between pixels X and Y with
similar intensities, Boykov and Jolly suggest the following
weight function :

wX ,Y = λ ∗ exp(− (IX − IY )2

2σ2 ) (3)

Variable λ specifies the relative importance of the discon-
tinuity cost to regional cost. After creating the graph, the
algorithm finds the global maximum flow from S to T or
the global minimum cut that separates the terminals. This
cut divides the image into cell (foreground) and background
regions, the result of this process is shown in Fig.3. As
mentioned earlier, the graph cut framework makes interactive
segmentation possible and gives the user the ability to modify
the results. After automatic segmentation, the biologist can

Fig. 4. Stack of three consecutive frames

relabel any misclassified regions. Once the algorithm receives
the correction, it imposes hard constraints by setting the
new weight value for regional edges. For example if the
user relabels a background region to be cell, the algorithm
sets, for every pixel X in the region, wX ,T = 0 and wX ,S = K
where K is any number larger than all other weights of the
computed nearest neighbours and recomputes the cut. This
process can be performed efficiently [17]. After finding the
pixel classification, the pixels may be grouped together either
by computing connected components or the method proposed
by Pan et al [10], to extract the cell boundary of each cell.

C. Using temporal information to improve the segmentation

In phase-contrast images, often the cell has the same
intensity as the overall background. Therefore when app-
lying graph cut, the cell regions may have discontinuities.
Increasing the value of λ does not solve this problem, as
it has side effects on other parts of the image, and will
continue cell regions into background regions. To overcome
this problem, we suggest the use of temporal information
which can be incorporated in the application by stacking
consecutive frames on top of each other (see Fig.4). The
number of frames in the stack may depend on the imaging
speed, and the amount of cell movement in consecutive
images. Without loss of generality, assume there are 3 frames
in the stack. When creating the graph edges for each pixel
in frame K, 9 extra edges are created for each of the K−1
and the K + 1 frames. At the end, 26 er ( N ∗ 9− 1, N=
number of frames) edges are created for each node. These
edges add extra costs to the dissimilarity of intensity between
consecutive frames. This approach can be used in online
systems when one frame delay is permitted, or when the
only available data is the previous frame. As the graph cut
algorithm tries to find the global minima, the outcome of the
algorithm will segment all the three frames.

TABLE I

Algorithm Sensitivity Specificity
Graph cut 81% 97%

Graph cut with Temporal Information 89% 97%
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III. RESULTS

We apply both versions of the proposed algorithm on a cell
video provided by Garvan Institute of Medical Research1.
The video contains 122 frames with frame size 650× 515
pixels. The algorithm is implemented in C++ and uses the
max-flow implementation of Vladimir Kolmogorov [16]. The
values of λ and σ were chosen experimentally to increase
Sensitivity and Specificity to 40 and 2 respectively. The
algorithm requires 6.110 seconds on Intel 2.67GHz processor
with 4GB of RAM. To quantitatively evaluate the algorithm,
we compare the outputs of the algorithms with the ground
truth images provided by an expert. The sensitivity and
specificity is computed as follows :

Sensitivity =
True Positive

True Positive+False Negative

Specificity =
True Negative

True Negative+False Positive

(4)

True Positive and True Negative are the number of the pixels
correctly classified, False Positive and False Negative the
number of the pixels incorrectly classified. As shown in Table
I, the graph cut algorithm that uses temporal information
outperforms the normal graph cut.

IV. CONCLUSIONS

This paper presents a single/multi frame pixel level cell
segmentation algorithm. The proposed method automatically
classifies pixels using the graph cut algorithm by estima-
ting the soft constraints from the training image and it
demonstrates how to incorporate cell temporal information
to gain better segmentation results. Future work includes an
automatic approach to find an optimal number of frames
in the segmentation stack, evaluating the algorithm with
more images and the use of Ensemble learning to exploit
the redundant segmentation results, obtained in consecutive
frame segmentation.
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[13] M. LeskŮ, Z. Kato, A. Nagy, I. Gombos, Z. TŽrŽk, L. VŠgh, and
L. VŠgh, “Live cell segmentation in fluorescence microscopy via graph
cut,” pp. 1485–1488, Aug. 2010.

[14] A. Salberg, J. Hardeberg, R. Jenssen, O. Daněk, P. Matula, C. Ortiz-
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