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Abstract— Accurate segmentation of cell nuclei in microscope
images of tissue sections is a key step in a number of biolog-
ical and clinical applications. Often such applications require
analysis of large image datasets for which manual segmentation
becomes subjective and time consuming. Hence automation of
the segmentation steps using fast, robust and accurate image
analysis and pattern classification techniques is necessary for
high throughput processing of such datasets. We describe
a supervised learning framework, based on artificial neural
networks (ANNs), to identify well-segmented nuclei in tissue
sections from a multistage watershed segmentation algorithm.
The successful automation was demonstrated by screening over
1400 well segmented nuclei from 9 datasets of human breast
tissue section images and comparing the results to a previously
used stacked classifier based analysis framework.

I. INTRODUCTION

Many high throughput biological and clinical applications
require selection of objects of interest in large microscope
image datasets that have been segmented with a high degree
of accuracy and confidence. Manual segmentation of such
large datasets is both subjective and time consuming, making
it essential to automate the processing. One such application
is spatial analysis of gene localization in interphase nuclei
using fluorescence in situ hybridization (FISH) technique [1],
[2]. In these studies, it has been shown that localization
of certain genes in interphase nuclei has implications for
their function. Moreover, gene localization of certain genes
is different in normal and cancerous tissues, suggesting a
diagnostic value for gene localization. In this application,
accurate segmentation of cell nuclei is a prerequisite for
drawing significant biological and diagnostic conclusions.
The task of segmenting nuclei for this application is uniquely
different to other tasks. On the one hand, many more nuclei
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are imaged than are needed for such analysis, enabling us
to emphasize highly accurate segmentation of a subset of
nuclei rather than attempting to segment as many nuclei as
possible. On the other hand, there is considerable variation
in size, morphological and textural features of the nuclei
because of the inherent variations between tissue samples
and truncation of the nuclei by the physical sectioning of the
tissue. High texture in the nuclear regions makes it difficult
to distinguish between the boundary and internal intensity
variations. Variation in morphological cues used by image
analysis and pattern recognition algorithms [3] to segment
nuclei complicates identification of well segmented nuclei.
A fast, robust and accurate automatic processing pipeline
was presented at this conference in the year 2009 [4] which
identifies a subset of the objects of interest (cell nuclei) from
the microscope images with a high degree of confidence.
Here, we present a series of advancements to this pipeline in
terms of improved segmentation, measuring more features of
segmented objects and replacing the stacked classifier with
an artificial neural network (ANN).

Nuclei segmentation [5], [6], [7], [8] in tissue images
is the first step in the workflow. The segmentation part
of the pipeline incorporates multiscale edge enhancement
and multistage watershed algorithms. However due to the
aforementioned difficulties, 100% segmentation accuracy is
not achievable. Consequently an ANN was trained on a
subset of the data (25%) and then used automatically to
identify with a certain degree of confidence a subset of the
segmented objects.

Although the basic building blocks of the pipeline were
used out of the box, the novelty of the method lies in
the fact that the basic blocks have been put together in an
unique and innovative way to solve an extremely challenging
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segmentation and screening task.

II. IMAGE DATA, NUCLEI SEGMENTATION AND
CLASSIFICATION PIPELINE

Sample preparation and image acquisition are as described
in reference [4]. We reduced 178 3D images from 9 datasets
(D1 - D9) consisting of normal and cancerous breast tissue
sections to 2D images using maximum intensity projection.

Fig. 1 shows the block diagram of the segmentation and
classification framework. The preprocessing step enhanced
the contrast of the nuclei boundaries and the enhanced
images were the input to the segmentation algorithm (Fig.
2). Output of the segmentation algorithm was classified
using a supervised pattern recognition engine to identify well
segmented nuclei having reasonable boundary accuracy.

A. Wavelet Preprocessing

The preprocessing step used wavelet based enhancement
of the object boundaries using LastWave toolbox [9]. It
involved storing the edges in the image using a chain coded
extrema representation followed by selectively enhancing
edges in different spatial scales using an user-defined factor.
Though this step accentuated the inside texture of the nuclei
(compare Figs. 3(a) & 3(b)), the advantage offered by the
boundary enhancement overshadowed this shortcoming.

B. Multistage Watershed Segmentation

Fig. 2 shows the mutistage watershed based segmentation
algorithm which replaced previously used hybrid levelset-
watershed algorithm [4] for nuclei segmentation. Wavelet
preprocessed images were first filtered using an edge pre-
serving adaptive Gaussian filter to reduce noise and texture
variations. Next, entropy based filtering followed by isodata
thresholding was used to identify the foreground region.
Morphological operations and size based screening was used
to remove small objects resulting from noisy background

(e)

(h)

(b) (c)

(f)(d)

(g) (i)

(a)

Fig. 3. (a) Original DAPI channel maximum intensity projection (MIP).
(b) Wavelet enhanced DAPI channel. (c) Entropy filtered and isodata thresh-
olded image after binary operations and size filtering. (d) Seeded watershed
output. (e) Remaining watershed fragments after rejecting background
fragments. (f) Gray weighted distance transform output. (g) Watershed
output on the gray weighted distance transformed image. (h) Merged output
of (e) and (g). (i) Final segmentation output after the cluster breaking
watershed and tree based merging.

and texture within the nuclei (Fig. 3(c)). To overcome
the problems of intensity variation and multiple maxima
identification, due to texture, multiple runs of an intensity
based seeded watershed algorithm [10] were used to obtain
an initial segmentation of the nuclei (Fig. 3(d)). Seeds to
initiate the watershed segmentation were identified using
an extended-maxima transform [11]. Predominant watershed
lines were retained as prominent edges (Fig. 3(d)). To remove
the background fragments, we performed k-means intensity
based clustering of the watershed fragments and rejected
fragments in the lowest intensity cluster (Fig. 3(e)).

To merge the fragments from the watershed we took
advantage of the expected morphological structure of nuclei
by using a gray weighted distance transform (GWDT) (Fig.
3(f)). The GWDT helped identify and seed high intensity
nuclei regions, while taking advantage of the structure of
the foreground area. Multiple runs of the seeded watershed
were used to segment the distance image (Fig. 3(g)). In-
tensity based watershed fragments were assigned the label
of the GWDT based watershed fragment with which they
had maximum overlap (Fig. 3(h)). To capture the nuclei
embedded in bigger clusters (and missed by the previous
steps), such clusters were identified using a two-dimensional
feature (size more than 10,000 pixels and perimeter-to-area
ratio (P2A) more than 1.4) classification system and then
watershed was performed on each identified cluster. Due
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to the nuclei size variations from one dataset to the other,
the watershed algorithms failed to identify potentially good
nuclei by oversegmenting them. Hence, in the final step of
the method, a tree based hierarchical merging strategy [12]
was coupled with elliptical nuclear shape modeling to merge
oversegmented nuclei. Fig. 3(i) shows the final output.

C. Pattern Classification Using ANN

The pattern analysis module is shown in Fig. 4. A 64
dimensional feature set was measured by augmenting the 24
dimensional feature set reported previously [4] with 40 new
features to capture most of the pertinent morphological and
textural properties of nuclei. The feature set was first normal-
ized and then reduced prior to classification with an ANN
which was used in place of an earlier stacked classifier [4]
in order to improve the classification performance. Feature
normalization plays a vital role in ANNs and is essential for
numerical stability, hence, we tested 6 normalization tech-
niques [13], namely, linear scaling to unit range, Z-Score,
linear scaling to unit variance, transformation to uniform
distribution, rank normalization and no normalization, to
identify the best. Next, dependency ranking [14] was used to
identify the most relevant features from the 64 dimensional
feature set. It was calculated using,

D(i) = p(xi, y)log
∣∣∣∣ p(xi, y)
p(xi)p(y)

∣∣∣∣dxidy, (1)

where D(i) is the dependency ranking score, xi is the ith

element of the feature set and y is the set of output labels.
Probability densities p(·) and joint probability densities p(·, ·)
were calculated using histogram count. This was followed
by a principal component analysis (PCA) based redundancy
removal.

The ANN architecture had a single tansigmoidal hidden
layer and a linear output layer. The classification problem
was posed as a 2 class problem with output classes: ’Well
Segmented Nuclei’ and ’Remaining Objects’ (i.e. poorly
segmented nuclei). The ANN training set composed of
feature vectors extracted from manually classified nuclei in
45 training images from the 9 datasets (D1–D9). 3 training
methods were tested namely Levenberg-Marquardt Back-
propagation Training, Conjugate gradient backpropagation
with Powell-Beale restarts and Resilient backpropagation
[15], all showing very similar results in terms of time and
performance. The ANN based classification scheme was
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used after the training phase (on 25% of data). The actual
classification of the test set into good segmentation and
inaccurate segmentation was entirely automatic.

III. EXPERIMENTS AND RESULTS

The 9 datasets had in all 178 images and 1496 nuclei were
manually identified as ’Well Segmented’. The 45 images
used as the training set had a ’Well Segmented’ manual
nuclei count of 386. Though the segmentation algorithm
segmented a reasonably high proportion of the imaged nuclei
(compare Fig. 3(a) and 3(i)), the goal of the study was
not to identify as many nuclei as possible, rather it was to
automatically identify the subset of nuclei that were precisely
segmented with high confidence.

Experiments to identify the best possible configuration for
’Well Segmented’ nuclei classification involved testing 1620
configurations of the pattern analysis module by varying the
hidden layer neuron count, the normalization method, num-
ber of PCA dimensions and the number of features selected
using dependency ranking. Fig. 5 shows the precision-recall
plot for the configurations color coded with the hidden layer
neuron count. The precision recall performance evaluation
was performed on 133 images that did not belong to the
45 image training set. The best possible single configuration
was identified as the one closest to the point (1, 1) in the
precision-recall plot having precision = 71.5% and recall =
73.6%. Fig. 6(a) shows segmented nuclei manually annotated
as ’Well Segmented’ (cyan) versus ’Remaining Objects’
(orange) and Fig. 6(b) shows the automatically selected
nuclei. Using this configuration the yield on the entire dataset
was 1435 nuclei. Performance of the analysis pipeline was
compared to that of a stacked classifier based classification
system [4]. Table 1 shows the comparison between the
stacked classifier and various configurations of the ANN
classifier. The performance of the ANN based system was
superior to that of the stacked classifier.

An unique and novel advantage of the new pattern recog-
nition engine (PRE) lies in the flexibility to progressively
select different configurations of the PRE (indicated by the
red arrow in Fig. 5) in order to select the objects with the
highest precision first. For instance, one can select an initial
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TABLE I
TABLE SHOWING PERFORMANCE COMPARISON OF STACKED CLASSIFIER AND ANN CLASSIFIER SYSTEMS

Performance Stacked Classifier ANN Classifier (6 Configurations)
Recall 63.89% 5.4% 20.9% 24.63% 53.09% 59.76% 73.6%

Precision 67.11% 98.2% 94.3% 85.96% 79.21% 77.68% 71.5%

(a) (b)

Fig. 6. (a) Hand annotated nuclei (Cyan - Well Segmented Nuclei, Orange
- Remaining objects) (b) ANN selected nuclei

PRE configuration with a very high precision (98.21%),
but with low recall (5.4%) (refer Fig. 5) to select a few
nuclei. Then, another configuration, albeit at a slightly lower
precision, can be used to select a few more nuclei. This
process can be repeated until a sufficient number of nuclei
have been automatically selected. Overall the precision will
be significantly greater than 71.5% that was achieved for
the single best configuration. This way one can be highly
selective about the quality of the nuclei while accumulating
sufficient nuclei for further analysis.

IV. CONCLUSIONS AND FUTURE WORK

We have described an automatic and intelligent image
analysis pipeline that segments a high proportion of nuclei
in tissue images and then screens out a certain number
of nuclei with an acceptable degree of confidence about
their segmentation accuracy. Although 3-D Z-stacks were ac-
quired, initial data exploration revealed that the segmentation
improvements offered by 3D analysis of the data would get
outweighed by the adverse effects of significantly increased
computational complexity, hampering time-efficient analysis
of several hundred nuclei which improves the accuracy of the
statistical analysis. Using a multistage watershed segmenta-
tion algorithm with superior segmentation performance, more
features to identify well segmented nuclei and an ANN,
the proposed methodology improves the nuclear screening
efficacy of a previously reported stacked classifier based
system. The proposed methodology speeds up the screening
procedure by many folds, thus, enabling it to be used as
a part of high throughput analysis. The method can be
used to analyze nuclear features such as gene positioning
or morphometric analysis to answer important questions in
genome biology.

Some of the future work includes combining the seg-
mentation results from the multistage watershed algorithms
described here with hybrid level set watershed algorithm used
previously [4], analysis of feature contributions, comparison

of the ANN classifier to other methods such support vector
machines and including features of the context around each
segmented object in the selection process and progressively
reconfiguring the classifier so that best segmented nuclei are
selected first. Inspite of the problem of increased computa-
tional complexity, 3D analysis of the data using computa-
tionally efficient algorithms is also envisioned as a potential
future work.
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