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Abstract— In this paper, we present an interactive method
for liver tumor segmentation from computed tomography (CT)
scans. After some pre-processing operations, including liver
parenchyma segmentation and liver contrast enhancement, the
CT volume is partitioned into a large number of catchment
basins under watershed transform. Then a support vector
machines (SVM) classifier is trained on the user-selected seed
points to extract tumors from liver parenchyma, while the
corresponding feature vector for training and prediction is
computed based upon each small region produced by water-
shed transform. Finally, some morphological operations are
performed on the whole segmented binary volume to refine
the rough segmentation result of SVM classification. The
proposed method is tested and evaluated on MICCAI 2008 liver
tumor segmentation challenge datasets. The experiment results
demonstrate the accuracy and efficiency of the proposed method
so that indicate availability in clinical routines.

I. INTRODUCTION

Liver cancer is the third most leading cause of death from
cancer worldwide and accounted for 700,000 deaths (around
9% of all cancer deaths) in 2008. Accurate Liver tumor
detection is an important issue in liver disease diagnosis
and liver surgical planning (e.g., oncologic resections and
liver transplantation). Moreover, the subsequent quantitive
analysis of liver tumor can help physician evaluate therapy
effect on tumors. Tumor volume is a precise representation
of tumor size for deciding the stage of cancer and therapy
evaluation. Due to the fuzzy boundary between tumor and
healthy parenchyma, inhomogeneous structures and noise,
the large variability of tumor shapes and intensities, liver
tumor segmentation becomes a challenging problem which
attracts much research attention in recent years. Especially,
MICCAI 2008 Workshop on 3D Liver Tumor Segmentation
Challenge provides a platform for testing and comparing
different approaches for the topic. In the competition, an
interactive method that combines graph-cuts with a wa-
tershed low-level segmentation [1] achieved the best per-
formance, and a semi-automatic method using supervised
voxel classification strategy in 2D slice [2] ranked second.
Other approaches applied in liver tumor detection include
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AdaBoost [3], thresholding and morphological processing
[4], etc.

Some related work on liver tumor segmentation from CT
scans proved that the supervised classification methods are
effective for this topic [2], [5]. Due to large inter-individual
intensity variability of different liver tumors, the supervised
learning methods are more robust than the unsupervised clus-
tering methods. In the proposed classification method, the
training samples are designated from user-selected seeds to
distinguish tumors and healthy parenchyma. Support vector
machines (SVM) is a supervised learning method that have
been successfully applied in discriminative classification and
regression problems. In the domain of 2D image classifica-
tion, SVM is trained and predicted on pixel level. However,
when generalized to 3D volume data, the SVM classifier
will take a long time to train and predict as a result of a
mass of voxels. In order to improve efficiency while not
affected the accuracy of classification, we use the SVM
classifier on region level which is produced by watershed
over-segmentation.

II. METHODS
The liver tumor segmentation workflow consists of the

following steps: 1) Pre-processing: Liver region segmentation
and contrast enhancement; 2) Watershed transform of the
liver region; 3) Region-based classification using SVM train-
ing and prediction; 4) Refined segmentation using connected
region detection and morphological operation.

A. Pre-processing
1) Liver Segmentation: The liver region is separated from

the abdominal CT scans using a statistical shape model with
optimal surface detection strategy [6]. The original CT slice
and the segmented orthogonal liver slice from an abdominal
CT volume are shown as Fig. 1.

Tumor

Fig. 1. The original CT slice and the segmented orthogonal liver slice
from an abdominal CT volume.
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(a) (b) (c)
Fig. 2. Contrast enhancement of CT volume. (a) Transformation function;
(b) The original CT slice; (c) The contrast-enhanced CT slice by histogram
stretching.

(a) (b) (c)
Fig. 3. Watershed transform based on immersion analogy [7]. (a) Original
transversal slice of liver before watershed pre-segmentation; (b) Transversal
slice of liver after watershed pre-segmentation; (c) Pseudo-color image of
catchment basins produced by watershed pre-segmentation.

2) Contrast Enhancement: Low contrast between liver
tumor and parenchyma makes tumor detection a difficult
problem. It is necessary to enhance contrast within liver
region to identify tumors in CT images. One of the most
widely used methods for contrast enhancement of image is
histogram processing. The original histogram of liver region
is stretched from zero to the maximum intensity of the liver,
as illustrated in Fig . 2.

B. Watershed Transform

Watershed transform [7] is one of the classical topo-
graphical methods that is commonly used in image segmen-
tation, feature extraction and surface visualization. Under
conventional watershed transform, an image is partitioned
into different catchment basins according to immersion or
drainage simulation [7]. However, watershed usually suffers
from over-segmentation due to noise or irrelevant local min-
ima in the gradient image. Instead of training or predicting
on voxels using classification method, watershed transform
is employed as a pre-segmentation step to improve efficiency.
The liver mask CT volume is partitioned into a large number
of small regions, which locate edges accurately and reduce
the number of training and predicting samples distinctly in
the succedent SVM classification. The original transversal
slice and the corresponding watershed pre-segmentation re-
sult based on immersion analogy [7] are shown as Fig. 3.
The implementation of watershed transform has linear-time
complexity with respect to the number of voxels.

C. SVM Classification

Support vector machines (SVM) is a popular machine
learning technique which have been successfully applied
in classification, regression and other learning tasks [8].
SVM formulation embodies the Structural Risk Minimization
(SRM) principle which enhances the generalization ability
[8]. Since limited number of training samples obtained by
an interactive manner in medical image segmentation, SVM

can effectively solve this small sample size problem due
to its superior generalization ability compared with some
traditional classification methods.

To obtain training samples, we interactively label tumors
and healthy parenchyma on traversal slice using a 3D brush.
For each catchment basin Ri produced by watershed over-
segmentation, a feature vector is constructed which consists
of four values: the mean Imean, the standard deviation Istd,
the minimum Imin and the maximum intensity Imax of the
catchment basin. Prior to the training process, each feature
vector x = [Imean, Istd, Imin, Imax] is normalized to [0, 1].

Given a set of N training samples (xi, yi), i = 1, · · ·N,
xi ∈ R4, yi ∈ {+1,−1}, while +1 denotes liver tumor and
-1 denotes healthy liver parenchyma. As shown in Fig. 4,
there are many possible hyperplanes that can separate the
two classes with the given formation:

〈ω, x〉 + b = 0 (1)

Among all possible hyperplanes, there is only one optimal
hyperplane that maximizes the distance between the closest
vectors of each class, which is illustrated as the black real
line in Fig. 4. The margin between support vectors is given
as 2/ ‖ω‖. To maximize the margin, we solve the following
quadratic problem with inequalities constraints:

min 1
2 ‖ω‖2

s.t. yi [〈ω, xi〉 + b] ≥ 1, ∀i
(2)

where ω is normal of the hyperplane, |b| / ‖ω‖ is the
perpendicular distance from the hyperplane to the origin.

With the Lagrange multiplier method, the optimization
problem of Eq. (2) is given as the saddle point of the
unconstrained objective function:

LP (ω, b, α) =
1
2
‖ω‖2 −

N∑

i=1

αi (yi [〈ω, xi〉 + b] − 1) (3)

where αi denotes the Lagrange multiplier. The Lagrangian
LP has to be minimized with respect to ω, b and subject
to the constraints αi ≥ 0. The primal problem LP can
be transformed to its dual formulation LD which can be
optimized via easier solution. The dual problem is given as
follows:

LD(α) =
1
2

N∑

i=1

N∑

j=1

αiα jyiy j

〈
xi, x j

〉
−

N∑

i=1

αi (4)

Finally, the optimal decision function is defined as:

f (x) = sign (〈ω, x〉 + b) = sign


∑

i∈S VS

αiK (xi, x) + b

 (5)

where xi is support vector, αi denotes Lagrange multiplier
corresponding to each support vector. When generalized
the optimal separating hyperplane to linearly non-separable
training samples, a kernel function K is employed to map the
training data to a high-dimensional space. We can use kernel
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Fig. 4. Optimal separating hyperplane for binary classification.

functions [9] such as linear function, polynomial function
and radial basis function. From the training process, the
support vectors xi, the corresponding coefficients αi and the
classification threshold b can be obtained for subsequent
SVM prediction of unlabeled catchment basins.

For each unlabeled catchment basins in a CT data, after
computing the feature vector x and linearly scaling to [0,
1] in previous step, we predict classification result of all
unlabeled regions via the decision function given in Eq. 5.

D. Post-processing

The SVM classifier usually yields classification error
for tumor segmentation. In the proposed method, the mis-
classified result takes the form of isolated regions scattered
across the entire CT volume. For the classified binary
volume produced by the previous step, we take two steps
to refine SVM classification result. First, the false positive
tumor regions are removed by connected region detection
with seeds in each tumor. Second, a morphological opening
operator followed by a closing operator with the same sphere
structure element is performed on the binary volume to
smooth contour and fill holes.

III. EXPERIMENTS AND RESULTS

The proposed method is tested on the training datasets
of MICCAI 2008 liver tumor segmentation challenge
(http://lts08.bigr.nl). There are a total of ten tumors
in four training datasets and the corresponding ground truth
segmentation result for each tumor. We implemented our
method based on the Medical Imaging Toolkit ( MITK
www.mitk.net ) [11] developed by our group on a 32-
bit desktop PC (2.33GHz Core 2, 2GB RAM). The SVM
classification step in the segmentation chain is implemented
based on the LIBSVM toolkit [12] developed by Lin et al.

After the pre-processing step, the CT volume is partitioned
into numerous small regions under watershed transform
using 6-neighborhood. The number of regions is reduced by
a factor of about 18 compared to the number of voxels. In the
SVM classification process, we select seed points by painting
tumor and healthy parenchyma in the CT volume using a
3D brush. Each liver tumor needs at least one seed for the
subsequent connected region detection. We use the linear
function as kernel function in SVM classifier. In the post-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 5. Segmentation process and result of four tumors in data LTS IMG04.
(a), (b) and (c) Interactive labeling of four tumors on transversal slice of
data LTS IMG04; (d), (e) and (f) Synchronous labeling on watershed pre-
segmentation images; (g), (h) and (i) The contour of the corresponding
segmentation result is in red while the reference result is in green.

(a) (b) (c)

(d) (e) (f)
Fig. 6. Segmentation process and result of tumors in data LTS IMG02 and
LTS IMG03. (a) and (b) Interactive labeling of three tumors on transversal
slice of data LTS IMG02; (c) Interactive labeling of one tumor on transversal
slice of data LTS IMG03; (d), (e) and (f) The contour of the corresponding
segmentation result is in red while the reference result is in green.

prossing step, a sphere of radius 2mm is used as structural
element to perform morphological operation.

As shown in Fig. 5 and Fig. 6, the red label indicates
tumor and the blue label indicates healthy parenchyma. The
corresponding final segmentation result in comparison with
the expert manual reference segmentation result is displayed
as the third row of Fig. 5 and the second row of Fig. 6.
Surface distance maps from the segmentation result to the
reference result of three training datasets are illustrated as
Fig. 7.

The average runtime for each step in segmentation chain of
10 tumors in training datasets is given in Table I. The total
runtime of the segmentation chain takes about 30 seconds
compared to 7 minutes with a slice-by-slice voxel-based
SVM classification method in previous work[2].
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(a) (b)

(c) (d)
Fig. 7. Surface distance map from the segmentation result to the reference
result. (a) and (b) Surface distance map of four tumors in LTS IMG04; (c)
Surface distance map of three tumors in LTS IMG02; (d) Surface distance
map of one tumor in LTS IMG03.

TABLE I
A R  E S  S C

Process step Watershed SVM Post-process

Runtime 5.54 8.34 16.19(seconds)

Segmentation results produced by our method are com-
pared to the reference results according to the following five
metrics: volumetric overlap error (OE), absolute relative vol-
ume difference (AVD), symmetric average surface distance
(DAvg), symmetric roots mean square (RMS) surface distance
(DRMS) and maximum surface distance (DMax). The five
evaluation metrics of 10 tumors segmented by the proposed
method are summarized in Table II. The proposed method
achieves an averaged overlap error of 31.14%, compared to
29.49% by the method [1] on the testing datasets from liver
segmentation workshop.

IV. CONCLUSIONS AND FUTURE WORKS

We have presented an interactive approach for 3D liver
tumor segmentation which combines watershed transform

TABLE II
R  F E M  A T T

Tumor OE AVD DAvg DRMS DMax
[%] [%] [mm] [mm] [mm]

IMG01 L1 40.09 27.13 2.61 3.35 11.58
IMG01 L2 51.91 24.26 2.47 3.21 8.87
IMG02 L1 42.68 7.57 1.97 2.66 9.51
IMG02 L2 33.39 43.45 1.58 2.11 6.95
IMG02 L3 42.51 39.19 1.70 2.16 6.48
IMG03 L1 28.97 22.90 0.56 0.94 3.95
IMG04 L1 16.81 7.23 1.25 1.77 9.72
IMG04 L2 12.05 0.45 0.36 0.64 3.17
IMG04 L3 23.25 17.40 1.94 2.55 12.48
IMG04 L4 19.71 6.12 1.12 1.51 6.33

Average 31.14 19.57 1.56 2.09 7.90

and SVM classification. This method is tested on abdominal
CT volume with ten liver tumors and five quantitative metrics
are computed, and the averaged overlap error for 10 tumors
is 31.14%. The experiment results demonstrate our method
is accurate and efficient for a wide variety of tumor types so
that indicate availability in clinical routines.

The proposed method has three advantages. First, the su-
pervised classification method incorporates prior knowledge
through training samples from users via interactive labeling
tumors and healthy liver. The classification approach is more
robust than the unsupervised clustering approach. Second,
the classification feature vector for SVM is computed within
catchment basins obtained from the previous watershed
transform, which is more efficient compared with the time-
consuming voxel-based SVM method. Finally, the proposed
method only has few parameters to set therefore improve
robustness of the method.

Future works will include some pre-processing and post-
processing steps of the proposed method. Previous to the
watershed transform, a 3D nonlinear diffusion filter would
be applied to a CT volume to reduce noise while pre-
serving tumor contour. Since the region-based classification
will produce rough tumor surface, an energy function that
incorporates smoothness of tumor will be employed to refine
the SVM classification result.
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