
  

  

Abstract— In this paper the statistical properties of the 

swallowing sound is discussed. This knowledge is required for 

the acoustical modeling of the swallowing mechanism as it is 

important to select an appropriate type of the system (i.e. linear 

vs. nonlinear) for modeling. The tests of linearity and 

gaussianity were performed. The results of the statistical test of 

gaussianity showed a nongaussian distribution of the 

swallowing sound signals. Also, the test of linearity exhibited 

the nonlinear characteristics of the model that represents the 

swallowing sound generation. 

I. INTRODUCTION 

WALLOWING  is one of the most complex mechanisms 

in human body. Any impairment such as lack of 

coordination of swallowing events or delays in initiating 

swallows may result in swallowing disorders (dysphagia). In 

recent years, swallowing sound analysis has received 

considerable attention as a non-invasive tool to study the 

characteristics of swallowing mechanism in healthy and 

dysphagic individuals [2]-[4]. This study attempts to derive 

the statistical properties of the swallowing sound. This will 

help in modeling the swallowing sound generation by 

providing a priori information about the acoustical signature 

of the swallowing.  

There are two techniques currently used to evaluate the 

swallowing mechanism: videofluoroscopy (VFS), fiber-optic 

endoscopy (FEES); each of them provides information of the 

swallowing process related to the anatomic structure it 

visualizes. VFS study is considered the gold standard 

technique for swallowing evaluation. Also, FEES has been 

reported to be a valid tool for detecting swallowing disorders 

such as aspiration, penetration and pharyngeal residue [5]. 

However, both methods are invasive. 

 Acoustical analysis of swallowing comes into play as a 

need for a non-invasive method of swallowing evaluation 

with minimal interference on the normal eating procedure. 

Swallowing sound analysis has received considerable 

attention as a convenient and accurate method for 

swallowing assessment [2], [6]-[9]. Swallowing sound is 

described by two distinct segments [10]: initial discrete 

sound (IDS) and bolus transit sound (BTS). IDS is 

associated with the opening of the upper esophageal 

sphincter that occurs during the pharyngeal phase. BTS is 

the gurgle sound generated as the bolus passes through the 

esophagus with peristaltic contraction during the esophageal 
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phase. 

Recently, the acoustical studies of swallowing mechanism 

mainly focused on the classification of the control and 

dysphagic groups [6], [11], [12]. There have been few 

attempts toward modeling the swallowing sound generation 

and transmission [13], [14], assuming that the swallowing 

sound is produced by exciting the pharyngeal wall tissue 

with train of impulses coming through the pharynx. Much of 

what is known about physiological systems such as 

swallowing mechanism has been learned using linear and 

time-invariant (LTI) system theory. The main advantage of 

linear system analysis is the availability of analytical tools to 

deal with the modeling. However, many real systems have 

complex properties that cannot be studied by restricting 

them to linear techniques.    

The input of the system is an important issue in modeling 

as it is neither known nor accessible for most physiological 

systems, such as swallowing. In such cases, it is convenient 

to make some assumption of the input signal, i.e. a random 

Gaussian noise signal. However, if the model is considered 

as an LTI, then it is not correct to assume a white Gaussian 

noise input while the output is not Gaussian. Hence, the 

statistical characteristics of the signal (the output of the 

system) should be studied before making any assumption of 

the input distribution and the type of the system. This paper 

investigates the gaussianity and linearity of the swallowing 

sound signal, and whether it is different between the two 

groups of control and dysphagic individuals. 

II. METHOD 

A. Data 

Data in this study included swallowing sound recordings 

of 10 dysphagic (stroke and/or head trauma patients) and 10 

agematched individuals without any swallowing disorder as 

the control subjects. The swallowing sounds were recorded 

by a Sony (ECM-88B) microphone placed over the 

suprasternal notch of the trachea and digitized at 44 kHz. 

The swallowing sounds of the dysphagic group were 

recorded simultaneously with the VFS or the FEES 

assessment at Health Sciences Centre, and Riverview Health 

Centre, Winnipeg, Canada. The experimental protocol was 

the same for all data recordings: Subjects were fed 5-8 

boluses of a thin liquid texture (i.e. juice) with a 5ml spoon. 

The study was approved by the Biomedical Ethics Board of 

the University of Manitoba, and participants signed a written 

consent prior to experiments. 

All signals were normalized to their maximum amplitude. 

IDS and BTS segments of the swallowing sound signals 

were separated manually by an expert by auditory and visual 
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inspection of signals in the time and frequency domain. The 

IDS part of the swallowing sound was considered in this 

study since it was assumed to be a stationary process. 

B. Statistical Analysis 

According to Wold decomposition theory, any weak or 

wide-sense stationary process �x(t)�  with innovations �ε(t)� 

has a moving average (MA) representation as (1) [15]: �(	) = ∑ ℎ()�(	 − ),����                                              (1) 

where �(	) are independent identically distributed random 

variables with ���(	)� = 0 and ℎ(0) = 1, ∑ |ℎ()|����� <∞. 

In other words, a linear model can approximate ��(	)� 

because the innovations are independent. In this case, any 

input with the Gaussian distribution will result in a Gaussian 

output. Thus, the 2
nd

 order statistics, i.e. correlation and 

spectral analyses, can readily determine the statistical 

properties of the process and be used for system 

identification. However, if the innovations are not normal 

and ����(	)� ≠ 0 or the signal comes from a nonlinear 

system, then higher order statistics become important. The 

3
rd

 order cumulant of a zero mean stationary process is 

defined as: �   (!, ") = ���∗(	)�(	 + !)�(	 + ")�                          (2) 

which is nonzero since ����(	)� ≠ 0. The cumulants of a 

Gaussian signal are zero at the orders higher than 2. 

Therefore, the Gaussianity of the process should be 

determined before making any assumption of the type of the 

system (i.e. linearity). It should be noted that the signal is 

assumed to be zero-mean in all the analyses. 

Similar to the definition of the power spectrum as the 

Fourier transform of the second cumulant (the 

autocorrelation), the Bispectrum is defined as the two-

dimensional Fourier transform of the 3
rd

 order comulant ( 3). 

This is the indirect method for calculating the bispectrum: 

%(&�, &�) = ∑ ∑ �   (!, ")'()(*+,-*./)�,�(��/�(�       (3) 

This function is periodic in both &� and &� with period 21. The symmetry properties of the bispectrum of a real 

signal can be expressed as: %(&�, &�) = %(&�, &�) = %(−&� − &�, &�)                                         = %(&�, −&� − &�)                    (4)  

Therefore, %(&�, &�) can be determined in terms of the 

values inside a triangle whose vertices are located at (0,0), 

(1/2,0), (1/3,1/3).  

The indirect method is not a consistent estimate of the 

bispectrum [15]. Also, this method is time consuming and 

has computational burden. This motivates the use of 

frequency domain analysis known as the direct estimation of 

the bispectrum assuming the linear representation shown in 

(1). The direct estimate of the bispectrum is calculated based 

on the Fourier transform of the signal (23&)4) is:  

%5(6, ) = 1/82(&))2(&�)2∗(&)-�) ,                               (5) 

where 8 is the length of the signal, and &) = 216/8 for 

6 = 0,1, … , 8. Since 2(&)) is periodic with 8, the values of 

%5(6, ) will be computed over the region inside a triangle 

formed by three lines as: k = 0, j − k = 0, and 2j + k = N. It 

was shown that this estimation is not consistent [16]. Thus, 

the concept of averaging such as what is done in the power 

spectrum estimation methods is applied. The simplest 

approach is to average the values of %5(6, ) over a 2D 

window of size > × >. All the points must be located in the 

triangular region introduced above. It is shown that to have 

an asymptotically unbiased estimate, > should be an 

increasing function of 8 and satisfy the criteria in (6) [15].  

@A!B→-� D(B)
B = 0,  and  @A!B→-� D.(B)

B = +∞                (6) 

Thus, M(N) is proposed to be equal to 8E , where 0.5 < � < 1. The area inside each window, over which the 

averaging is performed, consists of >� points centered at 
(�)(�)D

� , (2 − 1)>/2, where 6 = 1, … ,   and  ≤ B
�D − B

� . 

Therefore, the new estimator can be obtained as:  

%5HI(6, ) = 1/>� ∑ ∑ %5(J, K)�D(�L�(�(�)D)D(�M�()(�)D        (7) 

%5HI(6, ) is an asymptotically unbiased, consistent 

estimate [16].  

The approximate asymptotic distribution of the 2
nd

 order 

spectra estimates was shown to be independent complex 

normal variables [17]. Therefore, a complex normal 

distribution with unit variance can represent the distribution 

of N(6, ) = %5HI(6, )/OPQRS%5HI(6, )T.  

The two random variables U'(V) and W!(V) are 

independent and normally distributed (8(XY, 1)). Thus, the 

variable |V(6, )|� = U'(V)� + W!(V)� is distributed 

according to the chi-square distribution denoted by Z��([) 

with two degrees of freedom [18] and the non-centrality 

parameter [(6, ) = X�� + X�� [18] that can be written as [19]: 

[(6, ) = |%(6, )|� (8>(\])(�^  (� _(26 − 1)`
2 a                    

             ^  (� b(��(�)c
� d ^  (� b(�)(�)c

� + (��(�)c
� d                (8) 

Therefore, the statistic of e(6, ) = ∑ 2|V(6, )|�),�  has a 

chi-square distribution with 2n degrees of freedom with the 

non-centrality parameter as the summation of (6, ).  
 

1) Test of Gaussianity 

The test for gaussianity is designed based on the statistics 

introduced above. In case of a Gaussian signal, %(6, ) is 

equal to zero, which results in the central chi-square 

distribution as the non-centrality parameter becomes zero. 

To investigate the guassianity of a signal statistically, we 

need two null and alternative hypotheses. The null 

hypothesis (fg) is considered such that Y has approximately 

chi-square distribution Z�/� (0), and the alternative 

hypothesis (f�) would be that Y has the noncentral chi-

square distribution. In all instances a p value less than 0.05 is 

considered as the significance level. Rejecting the null 

hypothesis is equivalent to the rejection of the gaussianity 

assumption. If the signal is nongaussian, then the linearity 

test can be performed. Otherwise, the test of gaussianity 

does not convey any information about the linearity of the 

6022



  

system.   

2) Test of linearity 

Given that a stationary signal has a linear representative as 

mentioned in Eq. 1, then the the spectrum and bispectrum 

are obtained according to (10), (11), respectively: ^  (&) = hi�|f(&)|�                                                        (10) 

%3&Y , &)4 = X�f(&Y)f3&)4f∗3&Y + &)4                       (11) 

where ���(	)� = 0, hi� = ����(	)�, Xi = ���(	)� and f(&) is the Fourier transform of the filter coefficients. If Xi ≠ 0, then the linear process is non-Gaussian.  

The linearity is investigated by analyzing the 

characteristics of the noncentrality parameter of Z��([) 

denoted by [(6, ) which equals to [g (12) if the signal is 

generated by a linear process. [(6, ) = [g = jX��/hik,                                                    (12) 

where j = 8>(\].  

As mentioned before, the statistic 2|V(6, )|� has a chi-

square distribution (Z��([)). It is assumed that [(6, )s are 

generated by a random variable that has a degenerate 

distribution equivalent to Z��([g) when [(6, ) = [g. The 

statistical test is performed based on the distribution of the 

random variable that generates [. The null hypothesis 

assumes a linear process generates the signal, which results 

in a chi-square distribution with a constant noncentrality 

parameter [g = jX��/hik. The alternative hypothesis assumes 

that a nonlinear system generates the signal. Hence, the 

random variable generating [ has a non-degenerate chi-

square distribution.  

The noncentral chi-square distribution of Zl�([) can be 

expressed as the Poisson-weighted mixture of central chi-

square distributions [18] as indicated in (13). Therefore, Zl�([) has a thicker tail under the null hypothesis than under 

the alternative hypothesis. This can be measured by 

calculating the interquartile range of the distribution. The 

result of statistical test is obtained based on the comparison 

between the interquartile ranges of Zl�([) under each of the 

two hypotheses. The null hypothesis is rejected if the 

interquartile value of Zl�([) is greater than the interquartile 

value of  Zl�([g).  

C. Results 

The bispectra of typical swallowing sounds of a control 

and a dysphagic subject are depicted in Fig. 1. The 

amplitude of the counter plot of these samples of the 

bispectrum confirms the nongaussian characteristics of the 

swallowing sound signal. The swallowing sound signals 

were tested for the nonlinearity. Interestingly, all the 

statistical significance p values, were zero. Thus, the null 

hypothesis of gaussianity was rejected.  

Next, we performed the linearity test since the signals 

were categorized as nongaussains. The results show 

significant differences between the theoretically calculated 

value of the interquartile range and the estimated one for 

every swallow of each individual. The mean and standard 

error, averaged among the swallows in each group of data, 

are shown in Table I. Thus, it can be concluded that 

swallowing sound is generated by a nonlinear system, and 

should be analyzed by the nonlinear techniques. Moreover, 

no trend was found to be characterizing each group (Fig. 2). 

Also, the results of both tests didn’t exhibit any obvious 

difference between the two groups of data. 

 

(a) 

 

(b) 

Fig. 1. The bispectrum of the swallowing sound of (a) a control and (b) a 

dysphagic subject.  

 

Fig. 2. The test of linearity results: the difference between the estimated and 

the theoretical interquartile range for all the 10 control and 10 dysphagic 

data (averaged over all the swallows of each individual).   

 

D. Discussion 

The statistical analysis of the swallowing sound reveals 

the nonlinear properties of this signal. Recently, the 

nonlinear techniques were used to automatically detect the 

swallowing sound segments from the breath sounds, as well 

as classifying normal and dysphagic swallowing sounds 

6023



  

[20]. For example, nonlinear dynamic analysis, recurrence 

quantification analysis (RQA), (HMM), and multiresolution 

wavelet analysis were among the nonlinear techniques 

applied to detect characteristic features of swallowing 

sounds [20]. However, none of the few studies done on the 

swallowing sound modeling assumed nonlinear models for 

the swallowing sound generation.  

Table  I. The difference between the theoretical and estimated 

values of the interquartile range averaged for each group.  

Data Rtheory-Restimated 

Control Group 730.88 ± 21.59 

Dysphagic Group 1408 ± 66.24 

 

In the model that was suggested in [13] and further 

studied in [14], swallowing sound was assumed to be 

produced by exciting the pharyngeal wall structure and 

tissue with an impulse train coming from the pharynx. The 

swallowing sound was thought to be the output of an LTI 

system representing the pharyngeal muscle and tissue 

responses to the neural activities that trigger the swallow, 

and are represented by an impulse train. That model benefits 

from the simple known relationship between the generated 

sounds during the swallow, and the physiological events 

occurred as the result of the neural excitation. These were 

the first attempts toward modeling the swallowing 

mechanism. 

Although the linear model can shed light on some aspect 

of the swallowing sound generation model, it may lead to an 

oversimplification of the actual system dynamics. This study 

investigated the validity of the linear assumption. Based on 

the statistical properties defined for the signals generated by 

nonlinear systems, two statistical tests were designed: test of 

gaussianity and test of nonlinearity. Following the method 

introduced in [16], the test of nonlinearity can be performed 

if the test of gaussianity doesn’t hold. The results confirmed 

that all the swallowing sounds (in either group of control or 

dysphagic) demonstrated the nongaussian behavior. Hence, 

the sounds were investigated for nonlinearity properties. 

t(Zl�([) < �) = ∑ uvw/.(x/�)y
,!�,�g t(Zl-�,� (0) < �) (13) 

The statistic test based on which the linearity is 

determined was originated from the test statistics defined for 

the gaussianity. Both tests deal with the properties of the chi-

square distribution of the estimated bispectrum of the signal. 

The criterion for the gaussianity test uses the level of 

confidence, which is the error in accepting the central chi-

square distribution for an observed data while the true 

distribution is a noncentral one. The linearity hypothesis is 

approved if there is not a significant difference between the 

theoretical and the estimated values of the interquartile range 

of the distribution. The results showed the nongaussain and 

nonlinear characteristics of the swallowing sound of both 

groups of subjects.  

The bispectrum plots of both groups showed more and 

less the same pattern. However, further studies may find 

some characteristic differences between the bispectra of the 

two groups as this was beyond the scope of this study. The 

outcome of this study would be considered in future studies 

on modeling the swallowing mechanism.  
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