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Abstract— We propose a novel approach to calculate the
conduction velocity (CV) of the uterine contraction bursts
in magnetomyogram (MMG) signals measured using a mul-
tichannel SQUID array. For this purpose, we partition the
sensor coordinates into four different quadrants and identify the
contractile bursts using a previously proposed Hilbert-wavelet
transform approach. If contractile burst is identified in more
than one quadrant, we calculate the center of gravity (CoG) in
each quadrant for each time point as the sum of the product
of the sensor coordinates with the Hilbert amplitude of the
MMG signals normalized by the sum of the Hilbert amplitude
of the signals over all sensors. Following this we compute the
delay between the CoGs of all (six) possible quadrant pairs
combinations. As a first step, we validate this approach by
simulating a stochastic model based on independent second-
order autoregressive processes (AR2) and we divide them into
30 second disjoint windows and insert burst activity at specific
time instances in preselected sensors. Also we introduce a
lag of 5 ± 1 seconds between different quadrants. Using our
approach we calculate the CoG of the signals in a quadrant. To
this end, we compute the delay between CoGs obtained from
different quadrants and show that our approach is able to
reliably capture the delay incorporated in the model. We apply
the proposed approach to 19 serial MMG data obtained from
two subjects and show an increase in the CV as the subjects
approached labor.

I. INTRODUCTION

Premature labor and delivery is an important public
health problem as it is the main cause of morbidity and
mortality of newborns. One of the major challenges faced
by obstetricians is a proper diagnosis of labor which could
be useful especially in the prediction of labor for patients at
high risk of premature delivery. To date there is no accurate
and objective method to predict the onset of labor or to
distinguish between false and true labors. At present, the
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Magnetoencephalographic (MEG) Center, University of Tübingen, Tübingen
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progress of labor is monitored by recording changes in
the cervical state and by measuring the rate, duration and
amplitude of uterine contraction using tocodynamometer or
surface electromyogram (EMG) electrodes.
The uterine contractions are a result of complex
electrophysiological phenomena. It has been suggested
that the uterine myometrial activity is low throughout
pregnancy with significant increase during term or preterm
labor [1]. The analysis of serial recordings (e.g., from
gestational week 23 onwards), more precisely the analysis
of the conduction velocity (CV), might help elucidate
the nature of contractions and how the entire mechanism
develops throughout the gestation age.
Over the past years the uterine magnetomyogram (MMG)
has become one of the most promising biophysical markers
for pre-term labor. The MMG recordings have important
properties which makes them a suitable candidate for the
investigation of the uterine activity: (i) they are independent
of tissue conductivity (ii) the detection of the signal outside
the boundaries of the skin is possible without making any
electrical contact with the body and (iii) are independent of
references, which ensures that each sensor mainly records
localized activity.
In an effort to facilitate the automatic detection of uterine
contractions our group has developed a method, consisting
of multiple stages, to identify uterine contraction burst in
the MMG signals [2].
Although this technique has the advantage of capturing
the dominant frequency information, a single contraction
marker is created for all sensors. This has the inconvenience
that if one decides to investigate specific sensors, in some of
them one might find instances labeled as contractile pattern
although in reality there is no activity. Therefore, we have
extended this approach to encompass all magnetic sensors,
that is, for each sensor a contraction marker is computed
using the power information from the respective sensor.
Early studies showed increased CV of the uterine myometrial
cells before delivery and this has been attributed to the
increase in the gap junction between the myometrial cells
[3], [4]. In this work we develop a novel approach to
compute the CV of the multidimensional MMG signals. At
this time the prognostic capability of the CV has only been
evaluated by means of EMG [5].
To address the issue of the CV in MMG signals, we first
detect and mark the contractile patterns, within a 30 s
running non-overlapping window, in each sensor using
the above mentioned method. Second, we subdivide the
sensor space in 4 quadrants (Q) (see Fig. 1). To study
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the interaction between quadrants we create pairwise
combinations (e.g., Q1-2, Q1-3, Q1-4, etc.), we mark the
windows where sensors (from both quadrants) are active
and we compute the delay between the center of gravities
(CoG) using the high order cross-correlation function. Once
the delay is computed the CV can be easily calculated as
the ratio between the delay and the distance between CoGs.
We propose a novel way to compute the delay within
multidimensional data by which we can estimate the CV
of the uterine myometrial activity. We test the proposed
approach on the data simulated using the model and show
that our approach is able to capture the delay incorporated
in the model. In the next step we apply this to 19 serial
MMG data sets from two pregnant women and study the CV.

II. MATERIALS AND METHODS

A. Data Acquisition

Serial recordings, sampled at 1220.7Hz, from two healthy
pregnant women were analyzed for the current study. The
MMG recordings were performed at gestational age ranging
between 23 and 38 weeks (a total of 19 recordings). The
duration of a recording was typically around 30 minutes.
Prior to any processing the data was down-sampled to
250Hz and we excluded segments with maternal movement.
For this purpose, we first extracted the R peaks from the
maternal magnetocardiogram (mMCG) [6]. In a next step
we partitioned the signals into 3 minute disjoint windows
and in each window we compute the CoG for the R peaks.
We denote with mCoG the average of the CoG in particular
inspection window and with stdCoG its standard deviation.
Whenever in a window

CoGi > mCoG + 4 · stdCoG (1)

the corresponding sample was marked as movement
artifact. Later on in the analysis, whenever such a sample
was encountered, the corresponding inspection window
was discarded from further analysis. We have found that
equation 1 provides a fairly good discrimination of the
peaks that correspond to maternal movement. This was also
in agreement with the protocol recordings that were carried
out during each measurement.
The study was approved by the Ethical Review Board of the
Medical Faculty, University of Tübingen. Each participant
was informed about the purpose of the study and signed
informed consent prior to participation.

B. Center of gravity and Hilbert amplitude

1) CoG: We denote the j-th sample of the MMG signal
at k-th sensor as Sj

k and the corresponding Hilbert transform
is represented as Hj

k where j = 1 ... n with n representing
the number of magnetic sensors. We define the CoG for the
j-th sample as follows:

CoGj =

∑n
k=1(xk, yk, zk) ·H

j
k∑n

k=1H
j
k

, (2)
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Fig. 1. Partitioning of the sensor space in four quadrants. Diamonds,
crosses, asterisks and squares are marking the sensors that belong to the
first, second, third and fourth quadrant, respectively. Black circles mark
sensors in which the AR2 processes are modified.

The Hilbert transform of the MMG signal at k-th sen-
sor is computed using the ’hilbert’ function in MATLAB
(Mathworks Inc.) which yields a complex signal as a linear
combination of original signal with its Hilbert transform. The
magnitude of this complex signal gives the Hilbert amplitude
Hj

k .

C. High dimension cross-correlation function

In order to calculate the delay between two CoGs (which
are 3-dimensional vectors) we perform time shifted corre-
lation analysis. For this purpose we hold CoGs from one
of the quadrants constant and shift the CoGs from the
second by τ samples (back in time). We discard the last
τ samples from the CoGs that we hold constant in order
to match the number of samples in the later. To this end the
correlation coefficient is computed between these two CoGs.
However, in this approach there is an element of bias as
the correlation coefficient is computed for different number
of samples for each shift. To avoid this bias and thereby
to quantify the correlation correctly, for each shift τ we
discard from both CoGs the same number of data points that
corresponds to number of samples minus the maximum lag.
The maximum lag up to which we would like to perform
the correlation analysis is set to 15 seconds of data. For
each shift, we quantify the correlation using the following
correlation function [7]:

C =
tr(XtY )√

tr(XtX)tr(Y tY )
, (3)

where Xt represents transpose of the matrix X and tr
represents the trace of the matrix, i.e. the sum of diagonal
elements.

D. Modeling

We propose the following stochastic model based on the
second-order autoregressive process (AR2):

X(t) = a1X(t− 1) + a2X(t− 2) + η(t) (4)
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TABLE I
THE DELAY AS INSERTED IN THE STOCHASTIC MODEL AND AS

CAPTURED BY THE HIGH-DIMENSION CROSS-CORRELATION FUNCTION.

Delay Quadrant pair
Q1-2 Q1-3 Q1-4 Q2-3 Q2-4 Q3-4

Inserted 5.09 4.90 5.04 4.93 4.98 4.98
Detected 5.31 4.91 5.13 4.75 5.09 4.94

where the initial parameters of the AR2 process are
computed as in [2]. The purpose of the proposed stochastic
model is to mimic the amplitude of the MMG signals
by tweaking the parameters of the model. This model is
just sufficient to understand the limitation of our approach
as to capture the delay between the selected sensors.
Moreover, this model cannot explain the different frequency
characteristic that may be present in the measured MMG
signals.
We create n realizations (to match the total number of the
sensors) of the AR2 process for a duration of 9.5 minutes
with a sampling frequency of 250 Hz. We divide the sensor
space into four quadrants and in each quadrant we choose
ten sensors where we will insert burst activity. We divide
S(t) into disjoint windows and we alternate every 30
seconds between active and rest periods. During the active
periods the signals in the ten selected sensors are replaced
with a filtered (bandpass filter at 0.35-0.8Hz) and amplified
version of the corresponding original AR2 processes. The
first four active periods we modify the signal only in
one quadrant, that is, in the first active period signals are
modified in Q1, in the second active period in Q2, etc.
Starting with the fifth active period we modify the signal
in quadrant pairs, that is, in the fifth active period, signals
are modified in Q1-2, in the sixth period in Q1-3, etc. In
addition, whenever signals (in the ten selected sensors) are
modified in quadrant pairs, a delay of 5 ± 1 seconds is
introduced in the signals of the second quadrant of the pair.
The duration of the delay was arbitrarily chosen and the
values were drawn from a poisson random distribution. For
a schematic representation of the model with the modified
signals see Fig. 2.

III. RESULTS AND DISCUSSION

A. Event based simulation

The results of the event based simulation are summarized
in Table I. The first row contains the average delay that
was inserted in the preselected ten sensors of the model
described in section II-D. The second row shows the delay as
computed by the high-dimension cross-correlation function.
We understand that the high-dimension cross-correlation
function which was introduced in section II-C is able to
capture the delay between the CoGs.
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Fig. 2. An example of the modified signals. Top: signals belonging to Q1
(blue) and Q2 (red), note that in the fifth active window the signal in Q2
is delayed. Bottom: signals belonging to Q2 (blue) and Q4 (red), note that
in the ninth active window the signal in Q4 is delayed.
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Fig. 3. Conduction velocity in subject A (top) and subject B (bottom).
The values for each week represent the maximum velocity that occurred in
all quadrant pairs. Black thick line shows the trend in the data.

B. MMG data

The proposed approach was applied to biological datasets
as described in section II-A. Fig. 3 shows the CV in subject
A (top) and subject B (bottom), obtained for each quadrant
pair over the gestational age. A total of 19 datasets were
investigated (14 for subject A and 5 for subject B). The
values for each week were obtained as follows: for each
quadrant pair in each ’active’ inspection window the delay
between corresponding CoGs was computed using the high
dimension cross-correlation (HDCC) function as defined in
section II-C. The delay was tested for significance using a
bootstrapping approach.
In a next step the velocity (for inspection windows that were
marked ’active’) was calculated as the ratio of the distance
between CoGs and the delay between the corresponding
CoGs. In case of negative delay, we used the absolute value
of it. Finally, for a given dataset we quantify the CV by
taking its highest value from all quadrant pairs.
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A recent study has shown the better performance in pre-
dicting the preterm labor using the propagation velocity
in combination with the peak frequency compared to the
standard clinical methods such as Bishop score, contractions,
and cervical length [5].
In a previous study [8] the authors investigated several linear
and non-linear signal processing methods on groups of term
and pre-term delivery records recorded before and after the
26th week of gestation. The authors emphasize that their goal
was not to predict the beginning of labor nor following the
changes in spectra prior to delivery but to differentiate these
groups early during the pregnancy. The authors conclude that
when using a 0.3-3 Hz filter two methods (i) the median
frequency of the power spectrum and (ii) the sample entropy
provide best discrimination for the investigated groups. For
their term recordings the authors observe a slight decrease
in the median frequency of the power spectrum as time of
gestation progresses, while other studies show an increase in
the power spectra distribution [9], [10]. The decrease is later
explained by the difference in the processing of the recorded
data. Fele-Zorz and colleagues processed entire records,
the entire electrical activity of the uterus, while in those
other studies individual contractile events, i.e., the bursts
associated to contractions, were processed. The authors also
conclude, that if entire records are processed and records are
taken more than 7 weeks prior to delivery, a slight decrease of
the power spectra distribution is observed for term records.
In this work we have shown that the propagation velocity
is positively correlated with the gestational age in Subject
A and this can be attributed to the gradual increase in the
gap junction between the myometrial cells during pregnancy.
Indeed this subject delivered in two weeks from the last
study. In Subject B, no clear trend is seen between prop-
agation velocity and gestational age, which could be due to
the insufficient number of recordings or due to no significant
change in the uterine dynamics. This subject delivered within
four days from the last study but by c-section mode. Thus,
in these two subjects studied there is a correlation between
the CV and the outcome.
In future work this will be tested on a larger population and
compare CV with the traditional used clinical measures in
predicting the term/preterm labor.

IV. CONCLUSION

A novel approach to calculate the CV of the uterine
contraction bursts in MMG signals has been presented.
The results are in line with those previously reported
by Govindan and colleagues [11] and they indicate a
faster conduction time between muscle cells as the subject
approaches term.
In future work, the proposed approach will be applied
to a larger amount of low-risk datasets to investigate

its prediction power. The use of the current method
might provide a better understanding of the electro and
magnetophysiology of uterine activity and its development
throughout the gestational age.
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