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Abstract - This work aims the development of a predictive 

strategy able to estimate future events with relevant impact in 

the cardiovascular status.  

Based on wavelet transform, a new time series similarity 

metric is introduced, which is capable to detect a pre-defined 

pattern in time series data. In addition, a methodology 

combining a wavelet scheme with state space multi-models is 

proposed to achieve the prediction of future signal values. 

Blood pressure signals, collected by a telemonitoring 

platform (TEN-HMS), are used to detect the occurrence of 

future hypertension events. 

I. INTRODUCTION 

ardiovascular (CV) diseases are the leading group of 

conditions that cause death worldwide. The World 

Health Organization estimates that 17.5 million people died 

of cardiovascular diseases in 2005, representing 30% of all 

global deaths. High blood pressure or hypertension, one of 

the leading public health problems, is among the top most 

factors associated with cardiovascular diseases. 

In fact, uncontrolled and prolonged elevation of blood 

pressure (BP) can lead to a multiplicity of alterations in the 

myocardial structure, coronary vasculature, and conduction 

system of the heart, which can lead to the development of 

left ventricular hypertrophy, coronary artery disease, 

myocardial infarction, cardiac arrhythmias, heart failure 

(HF), among others [1]. HeartCycle European project aims 

to improve the quality of life for patients with coronary 

artery disease or heart failure, by monitoring their condition 

and involving them in the daily management of their disease 

[2]. Integrated in HeartCycle, the Medical Risk Assessment 

module is the responsible for the research and development 

of models to assess CV risk and status of the referred 

patients. Basically, these models assume that CV status i) is 

continually updated using measurements, parameters and 

symptoms, collected during daily home monitoring process, 

and ii) it may be characterized based on specific 

cardiovascular conditions. Examples of these are 

hypertension, myocardial ischemia, arrhythmias, pulmonary 

edema, etc., which are themselves defined through literature 

or by clinical expertise. In this context, relevant conditions 

have already been addressed by the authors, such as 

arrhythmias [3], [4] and myocardial ischemia [5]. Moreover, 

analysis of blood pressure signals, in particular the 

prediction of acute hypotensive episodes in intensive care 

units, has been recently addressed by the authors [6]. 
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The present work focus on the analysis of BP signals, 

collected by means of a telemonitoring platform, applied to 

the prediction of hypertension events. To achieve this goal, a 

generic methodology consisting of two phases is considered. 

In the first, a time series pattern detection methodology is 

developed to identify past similar situations. In the second, 

these similar situations are used to derive a prediction 

scheme that will estimate future values of BP and, 

consequently, will predict hypertension events occurrence. 

In terms of pattern detection in time series, several 

approaches have been proposed. The simplest time-domain 

algorithms used Euclidean distance to calculate a similarity 

metric between time series. Others [7] proposed the warping 

distance which deals with changes and shifts in time scale. 

Nevertheless, due to the high dimensionality of time series, 

most of the approaches perform dimension reduction on time 

series data. In effect, some works used discrete Fourier 

transform, others [8] employed the singular value 

decomposition transform, while others [9] used piecewise 

aggregate approximation. Works based on discrete wavelet 

transform (DWT) have also been proposed [10]. In effect, 

DWT provides an attractive means for developing 

multiresolution representations of signals suitable for 

patterns detection algorithms. Part of its success can be 

justified by the inherent ability of wavelet representations to 

reveal the superposition of different structures occurring in 

signals on different time scales at different times. 

In terms of prediction, where the basic idea involves the 

development of models that estimate future values of a signal 

based on its past values, linear autoregressive models, like 

autoregressive (AR) and moving average mappings, are well 

known examples of such [11]. Besides these, a large number 

of non-linear regressive mappings have been proposed for 

prediction tasks, namely fuzzy systems, neural networks, 

multi-models and phase space reconstruction techniques 

[12]. Several types of transform have also been applied for 

time series forecasting, such as principal component analysis 

[13], independent component analysis [14], Fourier 

transform and wavelet transform [15]. In fact, wavelet 

analysis allows the extraction of features that characterize the 

dynamics of the signal trends at several scales, enabling to 

efficiently deal with the prediction problem [16]. 

The major contributions of the present work are: (i) a new 

metric based on wavelet methodology that efficiently 

assesses similarities between time series; (ii) a prediction 

scheme that combines wavelet decomposition with state 

space multi-models to estimate the evolution of signals. 

Contrasting with classical autoregressive representations, 

multi-model schemes do not recursively use model outputs 

as inputs for step ahead predictions. As result, prediction 
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errors are not propagated over the forecast horizon and long-

term predictions can be accurately estimated. On the other 

hand, wavelet decomposition introduces robustness 

(denoising) as well as improves accuracy since prediction is 

independently considered for each frequency sub-band of the 

signal [17]. The effectiveness of the proposed strategy was 

validated by applying it to blood pressure signals, collected 

as part of the TEN-HMS study [18], in the prediction of 

hypertension events.  

The remainder of this paper is organized as follows. In the 

next section, the proposed methodology is described. In 

section 3, the achieved results using the TEN-HMS dataset 

are presented and discussed. Finally, in section 4, some 

conclusions are drawn. 

II. PROPOSED METHODOLOGY 

The proposed methodology consists of two main phases, 

as depicted in Figure 1.  

 

Figure 1. Hypertension detection scheme: time series similarities and 

prediction. 

 

In the first phase, the last Q collected values of the BP 

signal are considered as a template T(t) to be compared with 

the historic BP signals. Using the proposed wavelet-based 

time series similarity metric, a set of M segments, ys(t), that 

best match the template is identified. In the second phase, 

these M segments and the respective following P samples are 

employed to obtain the parameters of a state space multi-

model structure. In this structure, a different model is used to 

independently predict each P sampling instant. 

A. Time series patterns detection 

1. Wavelet template decomposition 

In a first stage the template signal 1,( ) QT t ∈ℜ , where t 

represents the discrete temporal index, is decomposed using 

DWT. Basically, this hierarchically decomposes a time series 

sequence in terms of an approximation of the original 

sequence, plus a set of details that range from coarse to fine. 

The main trend of the input sequence is preserved in the 

approximation part, while the localized changes are kept in 

the detail parts. The original signal can be reconstructed as 

described by (1), where ( )LD t and ( )LA t represent the detail 

and approximation coefficients at level L, respectively.  
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Taking into account the last expression of (1), 

approximation ( )LA t and details ( )  1,..,=iD t i L can be seen as 

a set of basis ( )  1,.., 1ϕ = +i t i L  from which is possible to 

describe the original signal. In effect, T(t) can be represented 

as a linear combination of these basis functions by means of 

a set of (L+1) coefficients 1, 1L
C

+∈ℜ
)

. 

1
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=

= ∑
)  (2)

Considering equations (1) and (2), template’s coefficients 

are 1ic =
)

. 

2. Similarity measure 

The similarity searching procedure makes use of a 

windowing scheme to compute the correlation between the 

template T(t) and the signal being analyzed 1,( ) N
y t ∈ℜ . 

 
Figure 2. Similarity measure estimation. 

The similarity measure is estimated for each segment, 
1,

( ) ∈ℜ Q
sy t , thus a set of (N-Q) correlation values are 

obtained. First, each segment ys(t) is described using the set 

of ϕi(t) basis functions that were derived from wavelet 

decomposition of the template T(t), using (3). 
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The coefficients  ic can be easily calculated based on a 

Least Mean Square Error problem formulation. In fact, 

equation (3) can be written as 

( )  ( )= Φsy t C t  (4)

Where 1, 1L
C

+∈ℜ  is a vector composed of the (L+1) 

coefficients and 1,
( )

L Q
t

+Φ ∈ℜ  is a matrix composed of the 

basis functions. Using the pseudo-inverse ( † ) of ( )Φ t , 

coefficients can be obtained as follows:  

†
 = ( ) ( )ΦsC y t t  (5)

In the present work it is assumed that the differences 

(distance) between the coefficients 
)

C and C can be used as a 

similarity measure. Moreover, when the basis functions are 

orthogonal these coefficients are unique. Therefore, 

orthogonal wavelets, such as the Haar wavelet, are suitable 

to be employed in this context. Given this, the similarity 

between template T(t) and segment ys(t) is computed as a 

distance between the two vectors of coefficients, 

( ) ( ), ( )  = dist(C,C)
)

scorrelation T t y t  (6)
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Although any distance can be used, in the present work it 

is computed as 

{ } { }-k|C-C| -k|1-C|1 1
 dist(C,C)= exp e

L+1 L+1
=∑ ∑

))
 (7)

This approach generates a normalized correlation measure 

in the interval [0..1], which enables to easily identify the 

patterns that best match the template. The value of zero 

indicates a very low similarity, while the value of one 

corresponds to the maximum similarity (same coefficients). 

The k value, equation (7), controls the aperture of the 

Gaussian, enabling to exponentially weigh distances in order 

to better discriminate correlations. 

It should be noted that this technique has the advantage of 

being very efficient. Remind that the inversion of the basis 

functions matrix is performed only once for all searches and, 

as a result, the coefficients are simply obtained through a 

matrix multiplication. Thus, it is possible to obtain 

correlation values for all N-Q segments of a signal y(t), 

efficiently and accurately. 

B. Prediction Models 

1. Multi-models scheme 

For the prediction of time series two main strategies can 

be followed: direct and recursive approaches. The last only 

use one model to recursively predict all future instants. 

Direct predictors imply the construction of a different model 

for each prediction instant (multi-models). Following a direct 

approach a future value at time instant P, yp(t+P), can be 

estimated by equation (8), where the mapping :
n

Pf ℜ → ℜ  

identifies the particular Pth model. 

( )( | ) ( ), ( 1),..., ( 1)+ = − − +p Py t P t f y t y t y t n  (8)

2. Sub-model structure 

The selection of a specific sub-model involves the 

characterization of the function ( )⋅if  and of the number of 

past observations to be considered. Using wavelet transform 

a scalar time series signal can be decomposed into several W 

scale sequences, thus a time series vector can be obtained by 

grouping for each instant the scales values. This time series 

vector can be interpreted as a state, used for both modeling 

and prediction tasks. Then, the final forecast of the original 

scalar time series can be obtained through the inverse 

wavelet transform. As researched by some authors [19], the 

accuracy of the final prediction results using this approach is 

superior than predicting the original time series directly. 

Using this formulation (state space) the prediction of a P 

step ahead value can be directly obtained by (9) 

( )( ) ( )Px t P f x t+ =  (9)

where  1,
( ) ∈ℜ W

x t  is the time series vector with the same 

dimension as the number of decomposition levels (W) at 

discrete-time t. In the simplest case, if a linear relationship is 

assumed, the function ( )⋅Pf  can be replaced by a matrix 

,∈ℜW W
PA . In this case, it is possible to estimate the PA  

matrix based on well-known system theory identification 

techniques, such as Least Mean Squares Error or Kalman 

filter strategies.  

III. RESULTS 

A. TEN-HMS dataset 

The Trans-European Network Homecare Monitoring 

Study (TEN-HMS) was designed to assess whether home 

based telemonitoring could reduce morbidity and mortality 

in patients with heart failure, compared with usual care or 

regular telephone contact. In this study, a total of 426 

patients with a recent admission for HF and Left Ventricular 

Ejection fraction <40%, were assigned randomly to home 

telemonitoring (168), nurse telephone support (173) and 

usual care (85). Particularly, home telemonitoring consisted 

of twice-daily self-measuring of weight, blood pressure, 

heart rate and rhythm, with automated devices linked to a 

cardiology center, during the period of two years. 

For the present work, a subsection of the complete dataset 

containing data from 83 patients was made available. In 

terms of strategy validation, only blood pressure signals were 

employed. Furthermore, only patients for whom there were 

BP measurements in 150 consecutive days (5 months) were 

selected for this purpose, resulting in a total of 33 patients. 

B. Patterns detection 

In order to determine the size of the template to be 

searched (Q), several experiments were conducted in which 

different values for Q were considered, namely 7, 14, 21 and 

28 days. According to the average errors, the selected value 

was Q=21 (three weeks). Given its orthogonally and 

simplicity properties, Haar wavelet was chosen for assessing 

signals similarity. The level of decomposition was L=4. 

On the other hand, the number of segments (M) that best 

match the template was adaptively computed for each case, 

ranging from 1 to a maximum number of 10. In a first phase, 

10 segments that presented the higher correlation with the 

template were obtained, as well as the respective future 

values. In a second step, this future values were compared 

themselves using the same correlation measure described 

above (7). The future segments that were more correlated 

were selected. This way, segments which evolution was 

dissimilar from the typical ones were discarded.  

C. BP signal prediction 

For each BP signal 9 different predictions were carried 

out, establishing as starting points of the forecast window the 

40
th

, 50
th

, 60
th

, …, 120
th

 days. Thus, a total of 33×9=297 

prediction tasks were performed, considering a forecast 

horizon of P=7 days (one week). The Daubechies wavelet 

“db4” with a level of decomposition W=4 was used to 

generate the time series vectors (state space models). Each 

state space matrix model, Ap, p=1,…,7 was computed using a 

LMS approach based on the segments identified in the signal 

similarity detection phase. 
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Figure 2 shows the results using the proposed prediction 

procedure. In this case, given a template T(t) to be predicted 

from instant t0 to instant t0+7, 4 segments were identified in 

a first phase. Using these segment (values before and after 

t0) P=7 different state space multi-models were afterward 

estimated, enabling to predict BP signal over the next week 

yp(t). 

 

Figure 2. Prediction results using the proposed methodology. 

The mean absolute percentage error (Mape) (10) and the 

well known Pearson correlation (Pc) between the estimated 

yp(t) and actual ya(t) signals, were computed. 

1

( ) ( )1
100

( )
=

−
= ×∑

P
a p

ai

y i y i
Mape

P y i

 (10)

For the present example these values were Mape=1.72 and 

Pc=0.70. Considering all the predictions (297), the global 

values were Mape=(2.67±1.95) and Pc=(0.52±0.28) 

(average±standard deviation), revealing the capability of the 

methodology. 

D. Hypertension events detection 

Finally, hypertension events were detected, whenever 

patient had more than five days  with arterial blood pressure 

higher than 135 mm Hg during the forecast period (a week). 

To assess the potentially of the strategy, a total of 138 

examples were previously selected from the dataset: 48 

corresponding to hypertension events and 90 to normal 

situations. Figure 2 depicts an example where a hypertension 

event has occurred (six days of BP higher than 135 mmHg 

have been predicted). Applying this algorithm to the 138 

examples, a global sensitivity of 85.4% and a global 

specificity of 92.2% were achieved. 

IV. CONCLUSIONS 

This work proposed a methodology to predict 

hypertension events over a specific time period. Using 

arterial blood pressure time series, a wavelet-based strategy 

together with state space multi-models was implemented, 

enabling to estimate future values over a forecast horizon. 

Applied to BP signals, collected as part of the TEN-HMS 

study, the referred strategy allowed to adequately detect time 

series patterns and, then, to use these patterns to predict the 

occurrence of hypertension events.  

Future work will address the extension of the strategy to 

more complex events, obtained from multi-parametric 

combination of several measurements. A particular topic to 

be researched is the HF decompensation episodes, to be 

validated using an available telemonitoring database. 
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