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Abstract—Lower-limb prostheses are rapidly advancing with
greater computing power and sensing modalities. This paper is
an attempt to begin exploring the trade-off between extrinsic
and intrinsic control modalities. In this case, between elec-
tromyographic (extrinsic) and several internal sensors that can
be used for intrinsic control. We propose a method that will
identify the particular features, taken from two trans-femoral
amputee and one trans-tibial amputee, during locomotion on
varying terrain, that perfectly discriminate between locomotion
modes. From this we are able to identify the source of the
discriminability from a large-set of features that does not depend
on the type of amputation. Also, we comment on the use of
this algorithm in selecting the most discriminatory and least
encumbering sensor/feature combination for transitions when the
ground underneath the foot is unknown for trans-tibial amputees.

I. INTRODUCTION

Recently, robotic prostheses for the lower-limbs have been
shown to improve the efficiency of level-ground walking [4].
These prostheses incorporate computerized control and can
assist users with level-ground walking. The use of embedded
computers makes complicated locomotion tasks tractable by
allowing more powerful control algorithms to be used during
movement. Most robotic prostheses take sensor information
from internal sensors (sensors that are located on the pros-
thesis) to control the behavior of the ankle during a typical
gait cycle – this is called intrinsic control. Less frequently, a
robotic prosthesis can take information from external sources
of information for control algorithms – this is called extrinsic
control.

Currently, users can change the mode of their prosthe-
sis manually at the cost of a relatively non-intuitive inter-
face [7]. We feel that these interfaces are too cumbersome for
biomimetic terrain adaptation. An interface that requires the
user to stop and start when they want to change their mode of
locomotion or stare at their hands during movement is never
going to be as efficient as human locomotion adaptation. Our
solution is to develop a robotic prosthesis that can utilize a
group of sensors attached to an instrumented limb to smooth
transitions between terrain modes.

Electromyography (EMG) has been used in upper-limb
prosthesis control for decades [8][9][10][11]. It is the primary
neural control input to the majority of robotic upper-limb

prostheses. It has been shown to be effective when used with
pattern recognition algorithms that infer the intention of the
user. More recently, the desire to make lower-limb prostheses
that can adapt to terrain in a biomimetic way has spurred
interest in using neural signals as a control input. Very recently,
a pattern recognition method for identifying locomotion modes
from EMG has been developed[2]. The results suggest that the
thigh muscles of a trans-femoral amputee might be sufficient
to obtain reasonably accurate identification of terrain, but
they concluded that classification with EMG alone may not
be sufficient for robust classification of different locomotion
modes. Earlier work by Praeer et. al. [6], show that there is a
difference in EMG envelope, which suggests that hip-muscles
might be useful in discriminating different locomotion modes.
Huang et. al [2], also observed this and developed a system
around it capable of discriminating different user-modes. In
addition, the author did not select those features of the EMG
signal that were the most useful. In 2006, Jin et. al. [5]
developed an algorithm that identified terrain during level-
ground walking. However, features were extracted from one
entire gait-cycle, which would make implementation in a real-
time system dangerous; the delay introduced by waiting one
whole gait-cycle to determine terrain can easily lead to falls.
Farrell, et. al. [12] reports that an optimal controller delay
for upper-limb prosthesis is between 100ms and 125ms, and
there is a linear performance degradation as the system delay
is increased. Based on the previous work, it is our opinion
that a strategy that uses very fast updates should be used to
identify user locomotion modes on varying terrain.

The EMG signal is difficult to use for locomotion mode
discrimination; it is time varying and the features of the signal
change within the same task over time. In order to quickly dis-
criminate between locomotion modes, the electromyographic
recording of each task needs to have a repeatable difference
that can be observed by a collection of features. Using a larger
window can increase the amount of information available
for decision making with a pattern recognition algorithm.
However, by using a larger window it is possible that features
between two modes might overlap and decrease the accuracy
of a pattern recognition algorithm, so instead we used short
windows ( 200ms) to extract EMG information. This was
observed between toe-off and heel-strike during some trials
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in [2].
Until a reliable form of neural-control is developed, robotic

prostheses will likely use data-fusion [13], incorporating sen-
sor information from a variety of sensors, to determine the
type of terrain the user is walking over. Without a good
feature selection algorithm it would be impossible to develop
a robust data-fusion algorithm that can estimate terrain. More
specifically, a data-fusion algorithm uses the features of a
signal to estimate the state of the robotic-ankle prosthesis
continuously. For the data-fusion algorithm to track variables
continuously, or discriminate between locomotion modes, the
features should have strong discriminatory power. In this work,
we take the first step in developing a data-fusion algorithm
by first understanding which features of both EMG and
other internal sensors are useful in discriminating between
locomotion modes.

Outside of EMG there are large range of sensors that can
be used, and that are placed directly inside a lower-limb
prostheses. Many studies have used accelerometers, gyros,
strain gauges, goniometers to infer the state of the ankle in
the real world (see [?] and references within).

Our approach is to use wrapper-based feature selection
methods [14] to focus on those features and muscles that
provide the lowest-error classifiers for two trans-femoral am-
putees and one trans-tibial amputee. Hargrove, et al. [1]
have used similar approaches for upper-limb prostheses. The
researchers successfully used uncorrelated linear discriminant
analysis (ULDA) to discriminate between movement classes
in upper-limb prostheses. Their results suggest that using
several different classifiers that train between several pairs
different tasks might be more practical than building one
classifier for all classes. The individual classifiers could be
combined in an intelligent way to produce a classification
based on the weighting among those individual classifiers.
Later work [2], showed it is possible to extract large amounts
of neuromuscular information from electromyography from
windows at important points of the gait cycle. However, in
previous work no one has picked out the particular features of
the lower limbs that are mostly responsible for classification
accuracy. Our work builds off these two previous works
and develops a novel feature selection method that can be
used with above-knee and below-knee amputees and directly
attribute classification accuracy with specific features. Specific
results concerning both groups are discussed. There are way
to improve this method and specific ways this method can be
improved will be discussed.

II. METHODS

A. Participants and Measurements

This study was conducted with approvals from Institutional
Review Board (IRB) approval and informed consent of all
subjects. The trans-tibial subject contained data collected with
the approval from the Committee on Humans as Experimental
Subjects (COUHES). The ages of our subjects were 55 and
50 for the trans-femoral amputees and 46 for the trans-tibial
amputee.

The muscles used for the trans-tibial and trans-femoral
amputees are listed in Table I. The two trans-femoral subjects,
TF01 and TF04, were 42 and 16 years post-amputation,
respectively. The level of amputation was unavailable at the
time of submission.

We used active surface electrodes to record signals from
the subjects. For the trans-tibial subject the electrodes were
manufactured by Motion Labs Systems(MA-411-002, Motion
Lab System, Inc.) which consisted of two contacts only. For
the trans-femoral and trans-tibial subjects, electrodes (MA-
411-002, Motion Lab System, Inc.) consisted of two contacts
only, and were mounted in an experimental socket liner. They
were similar to conventional electrodes, but were designed to
be stable while inside a patient mounted socket.

The gait-events were recorded using force-sensitive resistor-
based foot switches that were place under the ball of the foot
and the heel in all cases. For the trans-tibital amputee, six-
axis Inertial Measurement Unit (IMU) data were simulated
using optical motion capture data. 10mm reflective markers
were placed on the shank, lateral knee, and lateral ankle. The
plane formed by these three markers were used to estimate
the roll, pitch, and yaw of the plane in space, and in addition
to gyroscoping measures, the location of each marker’s three
dimensional position in lab-frame coordinates. The motion
capture system we used for the trans-tibial amputee, was a
Vicon 8i system with 12 cameras. The capture rate was 120
hz with sub-millimeter accuracy of the center of each reflective
marker.

B. Experimental Protocol

1) Trans-femoral Protocol: We studied four different lo-
comotion modes that are listed in TableII. Level ground was
tested on a flat walk-way in a laboratory setting. The ramps
were 5 degree ramps going up and down. During the obstacle
condition we asked the participant to step over an obstacle
with dimensions (10 cm x 10 cm x 50 cm). Each trial only
recorded a specific activity and not the transitions between
particular terrains.

2) Trans-tibial Protocol: We studied two different terrains;
positive 15 degree to negative 15 degree ramps and negative
15 degree to positive 15 degree ramps. The subject was asked
to start walking after a short count and recorded ended one
they finished a climb on each of the long 15 degree ramps.

C. Data Analysis

The data analysis of the clinical EMG data took place in
three parts; the data from EMG was first filtered, then features
were extracted to obtain features that characterized the EMG
signal from each of the 10 channels of recorded clinical data,
and the final step classified these data into each separate task-
type. A wrapper method, Sequential-Forward-Search, was used
to find the subset of features that maximized the leave-one-
out-cross-validation (LOOCV) performance on the training.
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Notation Legend
ID IMU position
D displacement
Y yaw
P pitch
R roll

Trans-femoral
ID Muscle
VM vastus medialis
GN left gastrocnemius
RF rectus femoris
MG medial gastrocnemius
VL vastus lateralis
RBF right bicep femoris
BF bicep femoris
RRF right rectus femoris
ST semitendinosus
GM gluteus maximus

Trans-tibial
ID Muscle
VM vastus medialis
GN left gastrocnemius
RF left rectus femoris
MG medial gastrocnemius
VL vastus lateralis
LBF left bicep femoris
RBF right bicep femoris
RRF right rectus femoris
ST semitendinosus
GM gluteus maximus
TA tibialis anterior

TABLE I
THE INTRINSIC AND EXTRINSIC SENSING WAS DONE WITH

ACCELEROMETERS AND ELECTROMYOGRAPHY, RESPECTIVELY.

Fig. 1. The layout of the sliding windows in the setting described in [2].
Decisions are made at the beginning and end of stance with the time between
devoted to identification of the terrain underneath the foot.

1) Phase-dependent Bayes Classifier: The phase-dependent
classifier was introduced in [2] to account for the non-
stationary behavior of EMG over time and increase the respon-
siveness of the system. The windows are placed near important
points in the signal. The majority of muscular information
is likely to be present in the extrinsic and intrinsic signals
primarily during stance and near the beginning of swing.

Classifiers that use longer time windows are subject to
continual changes in the EMG signal. The phase-dependent
classifier relies on the quasi-cyclic nature of the EMG signal
at these key points in the gait cycle. At these points the signal
has low-variation in the second order moment of the signal, is

quasi-stationary, and repeatable at the same time in the gait-
cycle. This benefits any classifier that uses the statistics of the
signal to perform pattern recognition.

The naive bayes classifier is a simple probabilistic classifier
that makes strong assumptions about the independence of
the features – essentially, it is an independent feature model.
Mathematically, given a terrain of type, T , and a feature vector
X = (X1, . . . , Xn) we have likelihood of the data as,

P (X|T ) =
n∏

i=1

P (Xi|T ).

This assumption is highly unrealistic since the majority of
features are related in complicated ways. The success of the
method is largely due to the nature of optimality in terms of the
zero-one loss which does not require a high-fidelity model of
the probability distribution. The optimal classifier is obtained
as long as the actual and estimated probability distributions
agree on the most likely class.

For the trans-femoral amputees, the training data obtained
from each trial is used to train the classifier. Each window has
it’s own unique classifier that is trained from data taken during
a 200ms window at heel-contact and toe-off. The window size
was chosen so that the EMG signal in that region was quasi-
stationary. The mechanical sensors, for simplicity, were also
sampled in the same 200ms window. However, their signals
have less variance than EMG does, so this window-length
should be sufficient for the purpose of classification. For trans-
tibial amputees, the window was much smaller ≈ 100 for
just the transition. This was largely due to the nature of a
transition between terrain. In particular, for our participant they
transitions very quickly between terrains. A slower transition
speed could produce better results with a EMG-based features.

2) Binary Comparison Between Terrains with Trans-
femoral Amptuees: In this study there were several different
types of terrain that a classifier has to discriminate between. A
classifier is normally trained to identify each type of terrain in
a window. However, we would like to investigate the value of
binary comparisons between different terrains, in addition to, a
more general classifier in identifying important features. This
will result in more classifiers for each window and is done
to evaluate the possibility of there being a few very powerful
features available for terrain identification beyond those that
are found in a more general classifier.

3) Pre-Foot Hold/Post-Foot Hold and Heel-Contact Toe-
Off Windows for a Trans-tibial Amputee: Analysis windows,
as mentioned above, are usually taken around points where
the most muscular information is likely to be available. The
standard configuration, Fig. 1, uses the toe-off and heel-contact
points to extract musculo-skeletal information for terrain iden-
tification. We believe it is better to determine the ground before
an instrumented leg comes into contact with the terrain.

Transitions between terrain, in the standard window setup,
would cause the ankle to fail. An example of this is given in
Fig. 2.
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Fig. 2. If the instrumented leg (red) does not encounter the up-slope
ramp with a high-peak and has to adapt to a down-slope current IMU based
algorithms and the standard window method will fail.

In this work the analysis window is taken when the in-
strumented leg lifts off the ground and ends right before
the heel hits the ground, assuming there is enough time to
servo into the correct position, on the final terrain. In this
way, the instrumented leg knows nothing about what the un-
instrumented leg experiences on the first part of the terrain,
in the figure this is up-ramp, so that it does not effect the
classifier for the opposite side, in this case down-slope.

4) Feature Extraction: Feature extraction resulted in eight
separate features for each sensor as depicted in Fig. 3. The
features were chosen so that they would pay attention to com-
mon measurables in the EMG signal: power, power-spectrum,
stationarity. Similar to [2], we use time-domain (TD) and auto-
regressive (AR) features in addition to the mean, maximum,
and minimum. This is done because TDAR and the mean,
max, and min features never require a signal-transformation
to compute and are fast on a variety of system configurations.

Fig. 3. The layout of the feature extraction algorithm applied to an individual
signal. The features are extracted to represent the signal as a combination of
power spectrum, autoregressive, and other statistical properties of the signal.

D. Hierarchy of Sensors

As the number of sensors that are attached to the body
to control external powered prostheses increases, the users get

more and more encumbered. To avoid this an attempt to select
those sensors that are least invasive. For example, the use of
EMG electrodes is far more encumbering than just using an
IMU that is implanted inside a robotic ankle. It also serves as a
”tie-breaker” between different sensing modalities. When two
sensors can both accurately discriminate between two terrain
conditions it makes sense to pick the one that is least invasive.

III. RESULTS AND DISCUSSION

Data were collected from three different subjects. Two of
these subjects were trans-femoral amputees and one of these
was a trans-tibial amputee. The first results presented below
are a study on the different features for steady-state motions,
excluding transitions, of differing terrains. The second study
included only transitions between a peak and valley at a 15
degree grade. Figure 2 shows the 15 degree peak and the
opposite was the 15 degree valley.

A. Trans-Femoral Results

1) Selected Features: The trans-femoral experiment was
run to determine the importance of particular features that
discriminate among four different walking conditions: level
ground, downramp with a passive prosthesis, obstacle, upramp
with a passive prosthesis. See Table II for acronyms.

Terrain Legend
Number Terrain
LG Level Ground
DP Downramp Passive
OB Obstacle
UP Upramp Passive

TABLE II
LEGEND FOR THE FOUR DIFFERENT TERRAINS TRAVERSED BY

ABOVE-KNEE AMPUTEES.

The results suggest that our algorithm reduces the number of
needed features to guarantee 100% accuracy with EMG while
discriminating between different classes except in one case1.
In the ”DP,UP” condition there was still reduction, but was
not quite as profound as the other conditions. The difference
between ramps, at a 5 degree grade, did not show significant
enough difference to be distinguishable with a major reduction
in the number of features. However, the results show that for
many of the binary discrimination tasks very few different
features were needed between different transitions, Table III.

The most frequent features to appear in the above tables are
the ones corresponding to the mean-absolute-value of the bicep
femoris, the mean-absolute-value of the vastus medialis, and
the root-mean-square of the rectus femoris. Note that others
did appear, but the most significant ones, in terms of their
apparent frequency, were the ones we just listed.

1The total number of features used for trans-femoral amputees was 209
independent features.
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TF01 Results
Transition TF01 Backward Heel Results TF01 Forward Heel Results
LG,DP RMS of GM MAV of the RF
LG,OB MAV of the BF MAV of the RF
LG,UP MAV of the BF MAV of the RF
DP,OB MAV of the VM MAV of the RF
DP,UP NDF NDF
OB,UP MAV of the VM MAV of the RF

TABLE III
THESE RESULTS ARE REPORTED FOR TWO WINDOWS TAKEN FROM THE

FIRST TRANS-FEMORAL AMPUTEES. IN MOST CASES A SIGNIFICANT
REDUCTION OF THE NUMBER OF NEEDED FEATURES IS OBSERVERSED. IN
THE DOWNRAMP/UPRAMP CONDITION, IN BOTH CASES, THERE WAS NOT

A SIGNIFICANT REDUCTION.

TF04 Results
Transition TF04 Backward Heel Results TF04 Forward Heel Results
LG,DP MAV of BF MAV of the RF
LG,OB 208 MAV of BF
LG,UP MAV of BF MAV of the RF
DP,OB MAV of BF MAV of BF
DP,UP NDF NDF
OB,UP MAV of VM MAV of BF

TABLE IV
THESE ARE THE RESULTS OBTAINED BY RUNNING THIS ALGORITHM ON

THE SECOND TRANS-TIBIAL AMPUTEE.

B. Trans-Tibial Results

A trans-tibial amputee walked and performed transitions
between a peak and valley similar to the set up described
earlier. It is worth noting that the period of transition was
approximately 100 ms, so EMG features should not be useful
during this period – previous work has shown[10] that 200 ms
is needed for the EMG signal to be quasi-stationary. Despite
this we used our algorithm with both sets of features. The
reason being that if we want to build a real-time EMG system,
without intrinsic sensing, transitions will have to be handled
by EMG. Our argument, and is verified below, that IMUs are
superior to EMG for these types of transitions. Results, Table
V, suggest that intrinsic sensing will reliably predict the terrain
before foot-flat, or post-foothold, with 100% accuracy.

The results in Table V suggest two things: 1) that the
window is too short for EMG to be a useable signal and
2) that IMU sensors might be a better choice than EMG for

Window Size Best Feature Set Accuracy
30 mean of IMU height at knee 100
40 mean of IMU height at knee 100
50 mean of IMU height at knee 100
80 mean of IMU height at knee 100
82 mean of IMU height at knee 100
85 mean of IMU height at knee 100

TABLE V
DIFFERENT WINDOW SIZES WERE USED TO ASSESS THE STABILITY OF
DIFFERENT FEATURES IN DISCRIMINATING BETWEEN THE PEAK AND

VALLEY CONDITIONS. THE SAME FEATURE WAS FOUND TO BE USEFUL
FOR ALL FEASIBLE WINDOW LENGTHS.

transitions with peaks that take place in short time windows,
see Fig. 4. In particular, since the knee-marker was so useful in
discriminating these two conditions there could be something
about the position of the knee prior to landing on the opposite
side of a peak or valley that is unique. This could be that the
knee contributes quite a bit to determine the end slope during
terrain transitions.
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Fig. 4. This figures shows the average height (blue line) and one standard
deviation error bars (red) of the knee IMU. There is no overlap of the values
within one standard deviation. This suggests that the feature obtained by this
algorithm is very good at discriminating between 30 degree peaks and 30
degree valleys for this subject.

The above result2 with a trans-tibial amputee was verified by
obtaining the same exact results for an able-bodied matched
subject. This suggests that we are biologically selecting the
correct feature. However, several different features can accu-
rately discriminate between these two rather extreme condi-
tions. We seek to choose the least invasive sensor in this case.

Table VI, shows that several different markers can discrim-
inate with 100% accuracy between these two terrains.

1) Discussion: The method above was able to work well at
finding those features that contribute heavily to the discrim-
inability of both above and below knee amputees. In each case,
above and below knee, we used different windows to extract
information from the sensors recording gait information. It
would be interesting to using similar windows for both above
and below knee amputations. Then we could compare the
features produced by this algorithm to see how closely they
are related.

Peaks and valleys in this case is in important step forward,
but also a very simplistic case. The trans-tibial subject experi-
enced pain while walking due to custom liner with electrodes
which shortened the inter-step length. An improved liner has
been developed and will be used instead of the current type.
Due to the limitation imposed by the current liner a limited
range of terrains could be studied. Expanding the range of

2The total number of features used for trans-tibial amputees was 225.
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Feature Accuracy (%)
root-mean-square of shank height 99.99
mean-absolute-value of shank height 100
maximum window value of shank height 100
minimum window value of shank height 100
mean window value of shank height 100
root-mean-square of knee height 100
mean-asbolute-value of knee height 100
maximum window value of knee height 100
minimum window value of knee height 100
mean window value of knee height 100

TABLE VI
SEVERAL DIFFERENT SIMULATED IMU LOCATIONS ON THE LOWER LIMB

CAN DISTINGUISH BETWEEN THESE TWO TERRAINS WITH 100%
ACCURACY. SOME ARE EASIER TO USE ON A PHYSICAL ROBOT THAN
OTHERS. IN PARTICULAR, THOSE LOCATED MORE DISTALLY WILL BE

CONTAINED IN THE ROBOT ANKLE, RATHER THAN INCONVENIENTLY, ON
THE BODY OF THE AMPUTEE.

terrains needs to be pursued and these factors will be addressed
in the follow-up study and subsequent paper.

It is interesting that this method had trouble with trans-
femoral amputees on ramps. Perhaps the degree of the incline
and decline were not different enough and this could have con-
founded the discrimination between the two conditions. More
work will have to be done to understand the circumstances
that effect this algorithm on ramps.

Another area to pursue is building a weight scheme or
voting scheme to combine individual classifiers to come to
a conclusion about the terrain. In particular, creating a sliding
window technique for trans-tibial amputees that builds on the
transition work reported here and the foot-contact and heel-
contact work for trans-femoral amputees applied to trans-tibial
amputees.

IV. CONCLUSION

We have shown in this work that using a Naive Bayes clas-
sifier with sequential forward search can locate and elucidate
the primary factors contributing to the discrimination between
several types of terrain for above and below knee amputees.
For trans-femoral amputees we identified the most important
factors that contribute to terrain identification from EMG. For
trans-tibial amputees we showed that with data take before
foot-flat in a difficult situation 100% classification accuracies
can be achieved, there are several sensors that can accomplish
this, and that intrinsic ones are best.

More work needs to be done to acquire additional data to
verify the utility of the knee in discriminating between peaks
and valleys. Ways in which these ideas can be used in physical
hardware will be pursued in later work. Also, a large dataset
with more sensors will be collected and this same method
be applied to trans-tibial amputees to understand factors that
contribute to effective terrain adaptation. Finally, our results
suggest that the use of intrinsic control in some cases trumps
the use of EMG for the identification of terrain.
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