
 

Abstract� Detection of drowsiness while driving is a leading

objective in advanced driver assistance systems. This work

presents a new index to assess the alertness state of drivers

based on the respiratory dynamics derived from an inductive

band.

More than 100 hours of driving in real environments from

13 healthy subjects were analyzed. The proposed method has a

sensitivity of 93.7% and specificity of 86.3% in detecting full

awake drivers while it has a sensitivity of 83.1% and specificity

of 95.3% in detecting drowsy drivers. The results show that the

proposed index may be promising to assess the alertness state

of real drivers.

I. INTRODUCTION

ROWSINESS is one of the main causes of vehicle
accidents. A recent study showed that 20% of crashes
and 12% of near-crashes were caused by drowsy

drivers [1]. The morbidity and mortality associated with
drowsy-driving crashes are high, perhaps because of the
higher speeds involved combined with delayed reaction time
[2].
Driver behavior monitoring, and the reliable detection of
drowsiness and fatigue is one of the leading objectives in the
development of new Advanced Driver Assistance Systems
(ADAS). Most systems of drowsiness detection in the
market based on measurements of driving performance
evaluates variations of the control of velocity, steering wheel
angle and other variables recorded by the CAN bus. Some
research groups have also advanced methods based on the
movement of eyes and head [3].  There are also approaches
based on biomedical signals, like cerebral, muscular and
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cardiovascular activity, although most of them are yet far
from being effectively introduced in the market.

Biomedical variables related to the autonomic nervous
system provide direct information of the driver physiological
state. Therefore, they may be especially useful to collect
detailed information of the drowsiness cycle and anticipate
risky situations while driving [4]. The systems available
nowadays in the market based on the analysis of drowsiness
in vehicle with physiological measures use mainly ocular
activity, EEG or galvanic response [5].

The aim of this work is to detect drowsiness in drivers by
the analysis of the variability of the respiratory signal
measured with a thoracic band in real driving conditions.

II. MATERIALS AND METHODS

A. Measurement protocol

The objective of the real vehicle tests [6], is to prove that
the behavioral and biomedical parameters that we choose as
indicative of somnolence in simulator tests are useful to
detect drowsiness in real driver performance using a fleet of
professional drivers. The participants in the test were
professional drivers (11 male, 2 female) with ages between
26 and 56 years (35.5 ± 8.9 years (mean ± standard
deviation)) and no clinical conditions. These tests were
designed and performed in IDIADA Technological Center to
assure the safety of the drivers. The tests were carried out in
two different routes: highway and mountain [7], to analyze
the driver behavior with different concentration levels [8].

To perform these tests, a real vehicle was equipped with a
biomedical monitor (Bitmed eXim Pro, BitMed) and an
infrared high resolution camera. The biomedical signals
selected as significant for this test were the external observer
(video), Electroencephalography (EEG), Electrooculography
(EOG) and thoracic effort. The thoracic effort signal was
measured in all cases using an inductive band located at the
middle trunk above the diaphragm. The respiratory signal
was sampled at 100 Hz and filtered with a 5 Hz low pass
filter. EEG signal was measured with a composition of four
EEG single electrodes located on the vertex zone of the
cranium and attached to the head surface with colloid. The
EOG signal was measured with four Electromyography
(EMG) single electrodes: two were located in the outer
cantus of each eye in the case of the horizontal EOG setup,
and two more electrodes located in the upper part and in the
lower part of the right eye. Video signal was recorded to
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generate the external observer variable with an infrared
high resolution camera.

Once the subjects are seated and connected to the
acquisition systems, they were asked to drive for 8 hours on
a real highway or a mountain route stopping during at least
10 minutes every two hours of continuous driving or every
time they felt drowsy [9]. Figure 1 shows an image of the
measurement environment.

Fig. 1.  Instrumented subject in vehicle

B. Drowsiness state classification

In order to classify the state of the driver, a reference or
Gold Standard signal (GS) was needed. The GS was
obtained with an algorithm that combines the partial results
by a majority ballot including the analysis of EEG, external
observer evaluation of video recording and PERcentage of
eye CLOSure (PERCLOS) in a 1 minute window around
every instant, and from which �fatigue� and �drowsiness�
thresholds were defined according to the personal basal
signals in awake state. The GS defined three phases: phase 0
or attentive corresponds to a fully awake driver, phase 1 or
fatigue to a fatigued driver and phase 2 or drowsy to a
drowsy driver [10]. The EEG parameter used in the analysis
was the ratio of vertex waves per minute [11]. This
measurement was adjusted by the judgement of a team of
medical experts (Clinica Dexeus, Barcelona, Spain), who
visually interpreted the set of EEG + EOG signals, to discard
�false� waves caused by eye movements or other artefacts.
PERCLOS was calculated with a monocular computer vision
system. This system was tested in driving simulators and
demo-cars driving in real conditions, and it was found to be
robust to head turns, partial occlusions and illumination
changes in both day and night scenarios.

The PERCLOS measure indicated accumulative eye
closure duration over time, excluding the time spent on
normal eye blinks. The degree of eye opening was
characterised by pupil shape. As eyes closed, pupils became
occluded by the eyelids and their shapes became more
elliptical. Therefore we could use the ratio of the pupil
ellipse axes to characterise the degree of eye opening. We
considered that eye closure occurred when that ratio was
over 80% of its nominal size. Then, the measurement of eye
closure duration was calculated as the time that the eyes
remained in that state [10].

The External Observer signal was based on the subjective
assessment of the behaviour (body and face movements) of
the driver. Body and face movements were annotated by
three external observers that analyze the video in real time
and classify every minute of the test. The final External
Observer signal was also computed with a majority ballot.

The driver�s behaviour was classified as �attentive�,
�fatigued� or �drowsy�, according to the criteria given in
Table I. These criteria are derived of the investigations
reported in reference [10]. The levels of EEG and PERCLOS
associated with changes from �attentive� to �fatigued�, and
from �fatigued� to �drowsy�, were determined in each test,
and a confidence interval based on the whole set of data was
defined for these thresholds, as represented in Table I. These
thresholds were used to define the GS, as a combination of
the EEG, external observer and PERCLOS variables. The
algorithm that defined this control signal considered that a
high power of EEG vertex waves (and a few alpha waves)
was a reliable indicator of drowsiness, but that incipient
fatigue could appear before this pattern occurred; besides,
frequent blinks and high eye closure appeared early,
although eyelid movement patterns vary a lot. Both signals
were combined with the external observer evaluation of the
state.

TABLE I
CLASSIFICATION CRITERIA TO OBTAIN CONTROL SIGNAL

Variable Phase 0 (attentive) Phase I (fatigued)
Phase II

(drowsy)

Behavior

High level of activity.
Fast reactions to road
events. Good lateral and
longitudinal control.

Slower reactions.
Yawns and large
body movements.

Fall of attention
to the road.
Driving errors.
Loss of facial
expressivity.

EEG

Lack of ¸-waves.
Regular patterns of ±-
waves with closed eyes.
Threshold for ¸ ratio:
< 1.92 (s.d. = 0.88)

Small ratio of ¸-
waves Regular
patterns of ±-waves
with closed eyes.
Thresholds for ¸
ratio:
> 1.92 (s.d. = 0.88),
< 8.22 (s.d. = 3.0)

High ratio of ¸-
waves.
Loss of ± regular
pattern.
Threshold:
> 8.22
(s.d. = 3.0)

PERCLOS

Small PERCLOS.
Low and fast blinking,
Threshold:
< 0.24 (s.d. = 0.19)

PERCLOS increase.
More frequent and
slower blinks.
Thresholds:
> 0.24 (s.d. = 0.19),
< 0.45 (s.d. = 0.24)

High PERCLOS
and slow blinks.
Threshold:
> 0.45
(s.d. = 0.24)

C. Thoracic effort derived drowsiness index

In order to classify the state of the driver from the thoracic
band, we have used a new index based in the comparison
between the characteristics of the respiratory signal when a
subject is awake (it is supposed that in this state the
respiration is stable and more or less periodic), with the
characteristics of the signal along the driving period. The
Thoracic Effort Derived Drowsiness index (TEDD) is
computed as follows:

The thoracic effort signal (Resp) is first filtered using a
second order Butterworth lowpass filter with a cutoff
frequency of 1 Hz.
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The first three minutes of acquisition are devoted to the
search of a 40 second reference window where the
respiratory signal is maximally stable. In order to identify so,
a sliding window with a delay of one sample is displaced
along the first three minutes and the following estimator is
computed for each sample:
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M is the number of samples inside the window. The
estimator quantifies the stability of the variance [12] so the
maximum of stability corresponds to the window that has the
minimum value. Once the interval with maximum stability is
set, the 70% percentile of Resp inside the interval (Th) is
obtained. The respiratory period is determined breath by
breath by identifying the crossings of Th with positive slope
across the whole recording, and computing the time interval
between consecutive crossings. The BB time series is
defined by these time intervals. Next, the smoothed BB time
series (sBB) is obtained by applying a moving average filter
of 4 respiratory periods. The breathing variability signal is
obtained as

( ) ( ) ( 1)VBB n sBB n sBB n= - - (2)

This variability is smoothed again with another moving
average filter of 10 respiratory periods obtaining the sVBB
time series and finally, the TEDD index for the respiratory
period n is defined as:

( )
( )

ref

sVBB n
TEDD n

VBB
= (3)

being VBBref the mean value of VBB inside the reference
window.

TEDD is, then, an index of the stability of the breathing
frequency. To classify the state of the driver and compare
with the GS, two empirical thresholds have been obtained
from previous studies in driving simulators [10]. The mean
of TEDD (mTEDD) has been computed for each minute of
the recording. For each minute, if mTEDD

· is below 3, a phase 0 is decided.
· is between 3 and 6, a phase 1 is decided.
· is above 6, a phase 2 is decided.

D. Statistical analysis

For each minute of recording, the phases obtained by the
thoracic effort signal and the GS were compared in order to
estimate the sensitivity and specificity of TEDD. Table II
shows a symbolic assignment to interpret equations (4) to
(9). In the equations, BC should be interpreted as the number
of times in all recordings that TEDD classified the minute as
a phase 1 while GS classified it as phase 2.

According to table II, sensitivity (Sens) and specificity

(Spec) for each phase is defined as:

0

AA
Sens

AA BA CA
=

+ +
(4)

0

BB BC CB CC
Spec

BB BC CB CC AB AC

+ + +
=

+ + + + +
(5)

1

BB
Sens

BB AB CB
=

+ +
(6)

1

AA CC AC CA
Spec

AA CC AC CA BA BC

+ + +
=

+ + + + +
(7)

2

CC
Sens

CC AC BC
=

+ +
(8)

2

AA BB AB BA
Spec

AA BB AB BA CA CB

+ + +
=

+ + + + +
(9)

TABLE II
SYMBOLIC ASSIGNMENT FOR SENSITIVITY AND SPECIFICITY DEFINITION

GS PHASE 0 PHASE 1 PHASE 2

T
E

D
D

P
H

0 AA AB AC

P
H

1 BA BB BC

P
H

2 CA CB CC

III. RESULTS

Figure 2 shows an example of the performance of TEDD

for a subject that it�s always alert and a subject with
occasional drowsiness. The driver�s stops along his/her route
are easily recognizable because the thoracic effort signal is
zero (denoting disconnection of the inductive band). The
drowsy subject is specially fatigued at the start of the
recording and improves the performance after the first stop.

The second driver performed pretty well during the whole
recording being always alert.

Table III shows the results of sensitivity and specificity
for all subjects.

TABLE II
SENSITIVITY AND SPECIFICITY OF PROPOSED INDEX WHILE REAL DRIVING

Sensitivity Specificity
Phase 0 (fully awake) 93.7% 86.3%
Phase 1 (fatigue) 49.3% 88.7%
Phase 2 (drowsiness) 83.1% 95.3%

IV. DISCUSSION AND CONCLUSIONS

The results confirmed the viability of drowsiness
detection while driving using the thoracic effort signal. The
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Phase 1 state shows a lower sensitivity because it is a
transition zone.

Some misdetections of the algorithm may be due to the
inter-subject variability of the thoracic effort signal. In order
to check so, future work will test if the thresholds on
mTEDD can be adapted with the body mass index of the
subject under measurement.

Fig. 2 Results for a drowsy driver (above) and alert driver (below)

TEDD avoids many pitfalls of PERCLOS that is highly
influenced by sunlight or the wearing of sunglasses. The
recordings in real vehicles analyzed in this paper did not
show any adverse effect in the results due to vibrations and
movement due to driving.

The thoracic band is a robust sensor that is sensitive to
changes in the entire thoracic contour, while other sensors
that measure displacement of the thoracic wall (ie. radar)
will be more sensitive to vibrations and body motion.
Further work will focus on unobtrusive measurement of the
respiratory signal using bioimpedance techniques in order to
avoid the use of the inductive band.

The results show that TEDD may be a promising index to
assess the alertness state of real drivers.
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