
  

  

Abstract—Myoelectric control has been an important area 
of research for the past 40 years for prosthetic control, since 
it targets amputees who lost their body limbs. Advances 
were achieved concerning the number of movements to be 
classified with high accuracy. Hence, not much research was 
done to extract information from single channel 
Electromyogram (EMG). This paper presents Empirical 
Mode Decomposition (EMD) for Feature Extraction (FE) 
from single-channel EMG for ten class wrist movements and 
handgrips. Two classification schemes were applied based on 
Time Domain-Auto Regression (TDAR) features (a 
commonly used approach in the Literature) and EMD, with 
Principle Component Analysis (PCA) for dimensionality 
reduction, and Support Vector Machine (SVM) for 
classification. With the use of only one single-channel EMG, 
the EMD achieved an improvement in the classification rate 
for a single flexor and extensor EMG channel of 11.2% 
(from 83.7% to 94.4%) and 13% (from 80.16% to 93.16%), 
respectively. The results suggested that EMD remarkably 
improves the classification performance for a single-channel 
EMG over the traditional time domain FE technique. This 
will reduce the computational cost of applying only one 
channel EMG and facilitates the acquisition of the EMG. 
The main drawback of using EMD technique is that it is not 
suitable for real time processing of prosthetic control. 

I. INTRODUCTION 
T has been reported that the EMG recorded from the 
forearm muscles after hand amputation is similar to that 

of healthy subjects [1, 2]. Therefore, there is still an EMG 
signal when the amputee intends to perform a movement. 
This fact has inspired researchers to develop myoelectric 
signal processing algorithms for the control of prosthetic 
hands. Myoelectric signal is the measurement of the 
electrical activity of the closely spaced muscles from the 
surface of the forearm [3]. It has played an important role 
in rehabilitation because of the non-invasive nature as 
well as ease of recording from the surface. As shown in 
the literature [4, 5], the general stages for a pattern-
recognition-based myoelectric control system are signal 
conditioning, feature extraction, dimensionality reduction, 
and classification. To reduce classification errors, past 
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research mostly has focused on how to improve specific 
information extraction from the EMG signals for the 
control of a myoelectric prosthesis. It has been shown that 
the classification performance is independent of the 
classifier choice [2]. Yet, there is little research done for 
extracting information from single channel EMG to 
classify multi-class hand movements. Traditional Feature 
Extraction (FE) techniques such as time domain features 
suffer from many problems. The main drawback of time 
domain analysis is that most of them are difficult to 
compute. Fourier Transform (FT) analysis is based on 
trigonometric functions which depend on a priori 
information [6]. Hence, the FT is not adaptive [6]. FT also 
assumes that the data is stationary and linear [7], which is 
not the case for the biomedical signals such as EMG [6]. 
Thus, Fourier domain analysis is also limited due to the 
highly non-linear and non-stationary nature of the EMG 
signal. 

To accommodate different types of complex 
biomedical signals and to extract more information about 
particular movements from a single-channel EMG, an 
adaptive analysis method is needed to overcome these 
problems. One alternative is the Empirical Mode 
Decomposition (EMD) recently introduced by Huang et 
al. [8]. The EMD decomposes complex signals into a 
finite, and often small, number of Intrinsic Mode 
Functions (IMFs) that can be readily analyzed by means 
of the Hilbert spectrum [8]. Furthermore, this 
decomposition method is adaptive and highly efficient 
[8]. EMD shares similarities with techniques such as the 
Wavelet Transform (WT) [8]. The main difference is that 
the EMD only uses the information available in the data 
and is completely adaptive. Whereas, the WT employs a 
set of pre-fixed filters based on the selection of the mother 
wavelet. Since the EMD is based on the local 
characteristic time-scale of the data, it is applicable to 
complex signals, such as biomedical recordings [9-12]. 
Moreover, the IMFs provide accurate information about 
the frequency content of the signal [8]. Lei et al. [13] 
applied the EMD technique combined with Largest 
Lyapunov Exponent (LLE) for FE from four EMG 
channels. Back propagation neural networks were used to 
classify six hand and wrist motions. Accuracies of 70%, 
73%, 69%, and 86% were achieved for each single EMG 
channel, respectively, with the EMD compared to values 
of 53%, 86%, 58%, and 83% obtained with the use of WT 
for FE. Their results suggested the potential of using 
EMD for information extraction from EMG signals. 
However, this study was based on limited quantities of 
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data and a large analysis window of 1 s was used, which 
exceeds the optimal controller delay for myoelectric 
control of 300 ms. EMD suffers from the requirement for 
high computational power to calculate the IMFs. Thus, 
EMD analysis is normally performed offline.   

This work presents an EMD technique to extract 
features from single-channel EMG recordings for pattern 
recognition based myoelectric control. The EMD is 
proposed to decompose EMG into IMFs that will be used 
for the classification of multi-class hand and wrist 
movements.  

The use of single-channel recordings has significant 
advantages both in terms of computational complexity 
and practical application of electrodes since only one 
channel has to be set up instead of several channels.  

II. EMPIRICAL MODE DECOMPOSITION 
In this paper, EMD was applied to obtain the frequency 

components that compose the EMG signal. EMD [8] is a 
non-linear technique to adaptively represent non-
stationary signals as sum of their IMFs. EMD considers 
the oscillations in signals at a very local level. Each 
resulting IMF satisfies two basic conditions [8]: 
1. In the complete data set, the number of extrema and 

the number of zero crossings must be the same or 
differ at most by one. 

2. At any point, the mean value of the envelope defined 
by the local maxima and the envelope defined by the 
local minima is zero. 

The EMD of the signal x(t) can be computed as follows 
[14]: 
1. Set g1(t) = x(t). 
2. Detect the extrema (both maxima and minima) of 

g1(t). 
3. Generate the upper and lower envelopes em(t) and 

el(t), respectively, by connecting the maxima and 
minima separately with cubic spline interpolation. 

4. Determine the local mean as: 

  (1) 
5. The IMF should have zero local mean. Thus, subtract 

m(t) from the original signal as: g1(t) = g1(t) – m(t). 
6. Decide whether g1(t) is an IMF or not by checking 

the two basic conditions described above. 
7. Repeat steps 2 to 6 and end when g1(t) is an IMF. 
 
 
 
 
 
 
 
 
 
 
 
 

The IMF is subtracted from the signal and the process is 
repeated on the remainder to compute the other IMFs. 

III. METHODOLOGY 
The block diagram of our proposed system is shown in 

Fig. 1 with the EMD for FE from single channel EMG. 
The EMG data sets used in the current work were 
acquired originally by Hargrove et al. [5]. 

Sixteen bipolar surface EMG electrodes were mounted 
around the upper part of the forearm as shown in Fig. 2. 
The subjects were asked to perform ten combinations of 
wrist movements and hand grips, namely, forearm 
pronation, forearm supination, wrist flexion, wrist 
extension, radial deviation, ulnar deviation, key grip, 
chuck grip, hand open, and rest state. The recordings 
consisted of five trials for each of the six participants. 
Each trial consisted of performing a medium force 
isometric contraction of the nine movements for duration 
of 5 s followed by a rest period. The signals were sampled 
at 1024 Hz sampling frequency and band pass filtered 
(10-500) Hz. For additional details, refer to [5]. 

To reduce computational complexity and to evaluate 
the potential value of single EMG channel analysis for 
myoelectric control of multi-class movement, the authors 
decided to test the proposed approach in two experiments, 
based on channel 1 in the flexor compartment for the first 
and channel 10 in the extensor side of the forearm for the 
second. These channels are shown in Fig. 2. 

Two classification schemes were used in this study. 
The first classification scheme consisted of FE performed 
by Time Domain-Auto Regression (TD-AR) features. 
PCA was used for dimensionality reduction for both 
schemes [12]. Hargrove et al. [15] showed that TDAR 
features achieved the highest performance for their 
experiment. TDAR features consisted of 6th-order AR 
models, root mean square value, zero crossings, integral 
absolute value and slope sign changes. For the second 
scheme, EMD was used to extract the features from a 
single EMG channel. The analysis window was 256 ms 
for both schemes with 64ms window overlap. 

The number of extracted IMFs was different for each 
subject (19-22 IMFs). Then, mean and variance which are 
simple and easy to compute were taken for each IMF to 
create the feature vector after the EMD analysis. 
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Figure 1. Block digram of the propsed myoelectric classifcation schemes 
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V. CONCLUSION 
The use of EMD for FE from single-channel EMG for 

myoelectric control was proposed. Two single channel 
EMG signals for ten hand movements were tested with 
two classification schemes with 256 ms window length. 
The classification schemes consisted of FE performed by 
Time Domain-Auto Regression (TD-AR) features (a 
commonly used approach in the Literature) for the first 
scheme and EMD for the second classification scheme 
with PCA for dimensionality reduction. SVM was used as 
a classifier for both schemes. The use of EMD for 
extraction of features from the single channel EMG 
increased the classification accuracy by 11.2 % for 
channel 1(from 83.7% to 94.4%) and 13.02% (from 
80.16% to 93.16%) for channel 10. The results suggested 
that EMD consistently achieves higher performance 
across all subjects over the traditional TD-AR features. 
Additional data collection from more subjects to take into 
account the inter-subject variability on a large scale is 
being done to test them with EMD for pattern recognition 
based myoelectric control.  
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Pronation Supination Flexion Extension Radial dev Ulnar dev. Key Chunk Open Rest 
Pronation 76.7 98.7 4.4 0 0 0 0 0 3.8 0 6.3 0 0.6 0 1.3 0 5.7 0 1.3 1.3 
Supination 3.8 3.8 82.5 93.1 0.6 1.3 0.6 1.9 5 0 0 0 0.625 0 0 0 0 0 6.9 0 

Flexion 0.6 0 1.9 1.3 90.6 97.5 0 0 0 0 0 0.6 2.5 0 4.4 0 0 0 0 0.6 
Extension 0 0 0.6 0 0.6 0.6 98.8 99.4 0 0 0 0 0 0 0 0 0 0 0 0 
Radial dev. 5 0 4.4 0 3.1 0 1.9 3.75 67.5 94.4 7.5 1.9 0 0 2.5 0 3.75 0 4.4 0 
Ulnar dev. 3.8 0 0 0 0.7 0 0 0 13.1 3.1 71.9 96.9 0 0 2.5 0 8.1 0 0 0 

Key 0 0 0 0 5 0 0 0 0 0 1.25 1.2 92.5 98.1 0.6 0.6 0.6 0 0 0 
Chunk 1.25 0 0 0 8.1 0 0 0 3.8 0 5.6 0 0.6 1.3 79.4 98.8 1.25 0 0 0 
Open 6.3 0 1.9 0 0 0 0 0 7.5 0 5.625 0 0 0 5.6 1.3 73.1 98.8 0 0 
Rest 1.3 0 11.3 0 0 0 0.6 10.7 5.7 0 1.9 0 0 0 0 0 1.9 0.6 77.4 88.7 
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Table 1. Confusion matrix in percentages for channel 1 of the second subject (AR-TD and EMD)  
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