
 

  
Abstract—The gold standard for diagnosing Sleep Apnea 

Hypopnea Syndrome (SAHS) is the Polysomnography (PSG), an 
expensive, labor-intensive and time-consuming procedure. It 
would be helpful to have a simple screening method that allowed 
to early determining the severity of a subject prior to his/her 
enrolment for a PSG. Several differences have been reported in 
the acoustic snoring characteristics between simple snorers and 
SAHS patients. Previous studies usually classify snoring subjects 
into two groups given a threshold of Apnea-Hypoapnea Index 
(AHI). Recently, Bayes multi-group classification with Gaussian 
Probability Density Function (PDF) has been proposed, using 
snore features in combination with apnea-related information. In 
this work we show that the Bayes classifier with Kernel PDF 
estimation outperforms the Gaussian approach and allows the 
classification of SAHS subjects according to their severity, using 
only the information obtained from snores. This could be the 
base of a single channel, snore-based, screening procedure for 
SAHS. 
 

Index Terms—Sleep Apnea, Snoring, Bayes Classifier, Kernel 
PDF estimation. 

I. INTRODUCTION 
HE Sleep Apnea Hypopnea Syndrome (SAHS) is a widely 
spread pathology whose earliest symptom is heavy 
snoring. The repercussions of snoring range widely in 

severity from no sleep disruption to continuously disrupted 
sleep [1]. The gold standard for diagnosing SAHS is the 
Polisomnograpy (PSG). This is a very expensive, labor-
intensive and time-consuming procedure. It would be 
desirable to have a screening method that aids pneumologists 
to early determine the severity of a subject in order to establish 
a priority among all candidates to PSG.. 
 Recent studies have shown differences in acoustic snoring 
characteristics between patients with SAHS and simple 
snorers [2]-[4]. Those studies usually classify snoring subjects 
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into two groups by means of an Apnea-Hypopnea Index (AHI) 
threshold. However, no further information about the severity 
of the subject is provided. A recent work of our group has 
addressed multigroup analysis of snoring subjects with SAHS 
[5]. Other authors have used a Bayes classifier with Gaussian 
PDF assumption [6], but in general the data will not follow a 
normal distribution. The classifier was fed by snoring 
information but also with features related to apneas. No 
automatic method was used for the selection of the 
independent variables of the classifier. 

Our approach is based on a single channel, namely the 
sound signal. Based exclusively on the information extracted 
from snores, we investigate the performance of a Bayes 
classifier with Kernel as compared to Gaussian PDF 
estimation method. In each case, the best feature set is selected 
by an automatic sequential variable selection algorithm. 

II. MATERIAL AND METHODS 

A. Signal Acquisition & Subject database 
Snoring sounds were noninvasively recorded using a 

unidirectional electret condenser microphone coupled to the 
skin surface through a conic air cavity. Snoring sound signals 
were acquired while full-night polysomnography was 
performed at the Sleep Disorders laboratory of the Hospital 
Universitari Germans Trias i Pujol in Badalona, Spain. The 
microphone was placed over the trachea at the level of the 
cricoid cartilage using an elastic band. The sound signal was 
amplified and filtered using a second order Butterworth analog 
pass-band filter between 70 and 2000 Hz, and then digitized with 
a sampling frequency of 5000 Hz and a 12 bit A/D converter.  
The snoring episodes were then identified by a previously 
trained and validated automatic detector developed by our 
research group [5],[7]. The snoring detector was designed to 
identify snoring episodes from simple snorers and OSAS 
patients, and to reject respiratory sounds from regular 
inspiration and exhalation, cough, voice and other artifacts. 
All the snores detected during the night were used for subject 
classification. The characteristics of the 36 subjects database 
and the total number of detected snores (T=65625 snores) is 
shown in Table I. 

The American Academy of Sleep Medicine proposes a 
stratification of the severity of SAHS into four levels,  
according to the thresholds AHI=5h-1,15h-1 and 30h-1 [8]. In 
this work we address the classification of snoring subjects into 
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three groups of SAHS severity given by thresholds AHI=5h-1 
and AHI=30h-1. In this way, each group will have a 
comparable size according to the subjects available in our 
database. The groups are G1 (no SAHS, AHI<5h-1), G2 (mild 
to moderate SAHS, 5h-1≤AHI<30h-1) and G3 (severe SAHS, 
AHI≥30h-1).  All patients were snorers (total number of snores 
range from 117 to 4214). 

B. Snore characterization 
Several techniques in time and frequency domains have 

been developed in our previous studies for the analysis and 
characterization of snores. In the time domain, snores are 
characterized by the period of the sound vibrations or pitch. 
The pitch waveform of a snore is parameterized by its mean 
value (Pm), standard deviation (Ps) and interquartile range 
(Piqr); the pitch density (Pdens), defined as the fraction of time 
with pitch over the total duration of a snore; and the number of 
intervals with pitch into a snore (Pints) [9].  

The frequency content of a snore is calculated by its Power 
Spectral Density (PSD). The shape of the PSD is characterized 
by a set of parameters [10]: the mean, median, peak and 
maximum frequencies (Fmean, Fmed, Fpeak, Fmax); the standard 
deviation of frequency (StdDev); and the symmetry and 
flatness coefficients (Csymm, CFlatn). The power distribution 
of the PSD is measured by energy ratios in three frequency 
bands of interest: B=(0,500)Hz, B=(100,500)Hz and 
B=(0,800)Hz. The energy in each band B is computed over the 
total energy (RWB) and over the energy out of that band 
(RoutB).  

The oral and nasal cavities introduce resonances into the 
snoring sound. These can be measured through the peaks of 
the Spectral Envelope (also called formants). Each formant is 
characterized by its frequency Fi, its amplitude with respect to 
the maximum Mi and its attenuation Li [11].  

The independent variables Xj of the classification model are 
selected among all the snore parameters derived from the 
sound intensity, the PSD, the Spectral Envelope, and the Pitch. 
The number of independent variables has been limited to 10. 

C. Naive Bayes Classifier 
The Bayes rule provides a direct way of multigroup subject 

classification. The independent variables Xj are assumed to be 

independent (Naive Bayes assumption) so that their joint 
Probability Density Function (PDF) can be factored into the 
product of the individual PDF’s. In order to avoid managing 
products of extremely low quantities, the logarithm of the 
PDF’s can be used instead of the PDF’s themselves. Thus, in a 
model with K independent variables X1,…, XK an observation 
(xi1, …, xiK) would be classified into the group Gclass given by: 

Gclass = argmax
i=1:3

P Gi( ) ⋅ pX1,...,XK
x j1,..., x jK Gi( ){ } ≈
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The Naive approximation has been reported to give good 
results in most scenarios [12]. The probability P(Gi) of 
pertaining to each class is estimated by the number of subjects 
in that class over the total number of subjects. Previous studies 
have used the Gaussian assumption for the conditional PDF 
pXi(Xi|Gj) of the independent variables [5]. However, in 
general the available data is not normally distributed, so it’s 
better to use a Kernel based PDF estimation. Given a 
symmetric Kernel function K(·) and a set of N observations 
(x1i, …, xNi)T of the variable Xi, the estimated PDF is given by 

p̂Xi
(x) = 1

N
K

x − x ji

h
⎛
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⎠
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j=1

N
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where h is the kernel bandwidth [12]. The Kernel PDF 
estimation will be compared with the Gaussian one. In both 
cases, the optimum independent variables are automatically 
selected with the Sequential Floating Forward Selection 
(SFFS) algorithm described in Fig.1. At each step, variables 
are elected to enter or leave the model depending on a 
performance measure J(·) to be optimized. Consider the 
confusion matrix C given by 

C =
G1G1 G2G1 G3G1

G1G2 G2G 2 G3G2

G1G3 G2G3 G3G3

⎛

⎝

⎜
⎜
⎜⎜
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⎟
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where GiGj is the number of subjects of group Gj that have 
been classified into group Gi. We define three performance 

Fig. 1. Sequential Floating Forward Selection (SFFS) algorithm used in the
Bayes Classifier. The cost functions J(.) studied are NPVG1, ACC and TFN. 
After the end of the algorithm, the optimum model is Yopt = arg max{J(Yk)}. 

TABLE I 
CHARACTERISTICS OF THE DATABASE 

  G1 G2 G3 p12 p13 p23 

Subjects 
(N=36) M/F 10/3 7/4 8/4 --- --- --- 

Age  
(yr) 

m 45 48 52 
0.706 0.096 0.460 

s 11 12 10 

BMI 
(kg/m2) 

m 27.1 28.9 32.9 
0.339 0.012 0.085 

s 4.4 4.1 6.0 

AHI  
(1/h) 

m 1.8 8.7 44.1 
<0.001 <0.001 <0.001 

s 1.5 2.5 20.2 

Num. 
Snores 

 

m 1226 2243 2084 
0.068 0.044 0.580 s 1289 1177 937 

T 15942 24672 25011 
M=Males, F=Females, m=mean, s=standard deviation, BMI=Body Mass 

Index, AHI=Apnea Hypopnea Index, T=Total number of snores, Gx=Group 
x, G1=AHI<5, G2=5≤AHI<30, G3=AHI≥30, pxy=Statistical Significance of 
the Mann-Whitney U test between groups x and y. 
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measures of interest: the Negative Predictive Value (NPV) of 
the group of healthy subjects (G1, AHI<5h-1) given by 

NPVG1 ≡ G1G1 / G1G1 + G2G1 + G3G1( )  (4) 

The Total False Negatives (TFN), i.e. the number subjects 
classified into a group with severity lower than it should: 

TFN ≡ G1G2 +G1G3 +G2G3  (5) 

And the Accuracy (ACC), defined as 

ACC ≡ tr(C)
sum(C)

 (6) 

where sum(C) is the sum of all the elements and tr(C) is the 
trace of the confusion matrix C. The SFFS algorithm involves 
a single (main) performance measure J(·). If, in a given 
iteration, the maximum or minimum of J(·) is reached for 
several variable sets, a secondary measure J2(·) is used to 
select the best set. We have studied the performance of the 
SFSS algorithm with the 6 possible combinations of J(·) and 
J2(·) using the performance measures (4)-(6).  

After selection of the optimum set of independent variables 
by the SFFS algorithm, the optimum models are validated by 
means of the leave-one-out crossover procedure. 

III. RESULTS 
Fig. 2 shows a comparison of the two PDF estimation 

methods in three snore parameters. We can see that in general 
the data does not follow a Normal distribution. In some cases 
it even has a bimodal distribution, which is well approximated 
by the Kernel PDF estimation.  

The evolution of the SFFS algorithm for the different 
combinations of the cost functions J(·) and J2(·) using the 
performance measures (4)-(6) is shown in Fig.3 for the Kernel 
PDF estimation. The best performance was obtained for 
J=ACC (Fig.3a) and J=NPVG1 (Fig.3b). In these cases, the 
results were independent of the choice of the secondary 
measure J2(·), so only one of them is shown.  

The confusion matrix (3) of the optimum selected models is 
shown in Table II for Gaussian PDF estimation and in Table 
IV for Kernel PDF estimation. We can see that the Kernel 
method outperforms the Gaussian approach in almost all 
cases. In the model with J=NPVG1, no patient with SAHS (G2 
or G3) is classified as healthy (G1), and all healthy subjects 
are correctly classified (Table II-d, Table IV-c,d). The model 
with J=ACC obtains a better TFN, but some patients with 
SAHS are classified into the healthy group (Table IV-b). 

The corresponding confusion matrixes of the crossover 
validation are shown in Tables III and V for Gaussian and 
Kernel PDF estimation, respectively. Under validation, the 

model with Kernel PDF using J=ACC provides the best 
balance of low TFN and high NPVG1 (Table V-a,b). 

IV. DISCUSSION AND CONCLUSIONS 
Previous studies used to classify snoring subjects into two 

groups based on a single AHI threshold [2]-[4], or analyzed 
parameters of three groups of subjects, without classification 
methods [5]. The multi-group classifier proposed recently by 
Ben-Israel et al. [6] uses Bayes method with snoring 
information but also with two features related to apneas, 
which require synchronizing the acoustic signal to the PSG 
signals. This additional complexity permits the use of a sub-
optimum Gaussian PDF estimation.  

Our method provides a way of classifying snoring subjects 
according to their SAHS severity, based exclusively on snore 
features obtained from a single channel system. The method 
could be the basis of an early screening process. The NPVG1 
should be as high as possible, as every healthy subject that is 
wrongly sent to a second stage (PSG) supposes a big cost to 
the Public Health Care System. The TFN should also be kept 
to a minimum, in order not to mistake any SAHS patient (G2 
or G3) by a healthy subject.  

Performance measures could alternatively be stated in terms 
of Total True Positives (TTP). The low validation rates 
obtained may be due to overfitting of the optimum 
classification model. We are currently improving the method 
to achieve better validation results. The method also needs to 
be validated over a greater database. 

   
(a)              (b) 

 

   
(c)              (d) 

Fig. 3.  Evolution of the SFFS algorithm for the different combinations of
the performance measures J(·) and J2(·) using the Kernel (a,b) or the
Gaussian (c,d) PDF estimation method. The horizontal axis is the iteration
number, which coincides with the number of variables in the model. 

         
 

Fig. 2.  Data Histogram, Gaussian PDF Fit (circles) and Kernel PDF estimation (asterisks) for snore parameters RW0-800, Pdens and Fpeak. 
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TABLE II 
CONFUSION MATRIX OF THE OPTIMUM CLASSIFICATION MODELS (GAUSSIAN PDF ESTIMATION) 

  
J=ACC, J2=TFN 
NPVG1=92.3% 

TFN=8.3% 
 

J=ACC, J2= NPVG1 
NPVG1=76.9% 
TFN = 5.5% 

 
J= NPVG1, J2=ACC 

NPVG1=92.3% 
TFN = 13.9% 

               J= NPVG1, J2=TFN 
                  NPVG1=100% 
                   TFN = 13.9% 

  Classified Group (%)  Classified Group (%)  Classified Group (%)                 Classified Group (%) 
  G1 G2 G3  G1 G2 G3  G1 G2 G3  G1 G2 G3 

Original 
Group 

(%) 

G1 92.3 0 7.7 G1 76.9 7.7 15.4 G1 92.3 0 7.7 G1 100 0 0 
G2 27.3 72.7 0 G2 9.1 90.9 0 G2 9.1 90.9 0 G2 0 100 0 
G3 0 0 100 G3 0 8.3 91.7 G3 8.3 25 66.7 G3 0 25 75 

                 (a)              (b)               (c)               (d) 

TABLE III 
CONFUSION MATRIX OF THE CROSSOVER VALIDATION OF THE CLASSIFICATION MODELS (GAUSSIAN PDF ESTIMATION) 

  
J=ACC, J2=TFN 
NPVG1=46.1% 
TFN = 36.1% 

 
J=ACC, J2= NPVG1 

NPVG1=46.1% 
TFN = 25.0% 

 
J= NPVG1, J2=ACC 

NPVG1=61.5% 
TFN = 33.3% 

               J= NPVG1, J2=TFN 
                  NPVG1=61.5% 
                  TFN = 33.3% 

  Classified Group (%)  Classified Group (%)  Classified Group (%)                 Classified Group (%) 
  G1 G2 G3  G1 G2 G3  G1 G2 G3  G1 G2 G3 

Original
Group 

(%) 

G1 46.1 23.1 30.8 G1 46.1 23.1 30.8 G1 61.5 15.4 30.8 G1 61.5 15.4 30.8 
G2 36.4 18.2 45.4 G2 45.4 27.3 27.3 G2 45.4 36.4 18.2 G2 45.4 36.4 18.2 
G3 25.0 50.0 25.0 G3 8.3 25.0 66.7 G3 25.0 33.3 41.7 G3 25.0 33.3 41.7 

                 (a)              (b)               (c)               (d) 

TABLE IV 
CONFUSION MATRIX OF THE OPTIMUM CLASSIFICATION MODELS (KERNEL PDF ESTIMATION) 

  
J=ACC, J2=TFN 
NPVG1=92.3% 
TFN = 2.8%  

 
J=ACC, J2= NPVG1 

NPVG1=92.3% 
TFN = 2.8% 

 
J=NPVG1, J2=ACC 

NPVG1=100% 
TFN = 8.3% 

               J=NPVG1, J2=TFN 
                 NPVG1=100% 

               TFN = 8.3% 

  Classified Group (%)  Classified Group (%)  Classified Group (%)                 Classified Group (%) 
  G1 G2 G3  G1 G2 G3  G1 G2 G3  G1 G2 G3 

Original 
Group 

(%) 

G1 92.3 0 7.7 G1 92.3 0 7.7 G1 100 0 0 G1 100 0 0 
G2 9.1 90.9 0 G2 9.1 90.9 0 G2 0 100 0 G2 0 100 0 
G3 0 0 100 G3 0 0 100 G3 0 25 75 G3 0 25 75 

                 (a)              (b)               (c)               (d) 
TABLE V 

CONFUSION MATRIX OF THE CROSSOVER VALIDATION OF THE CLASSIFICATION MODELS (KERNEL PDF ESTIMATION) 

  
J=ACC, J2=TFN 
NPVG1=53.8% 
TFN = 30.6% 

 
J=ACC, J2= NPVG1 

NPVG1=53.8% 
TFN = 30.6% 

 
J=NPVG1, J2=ACC 

NPVG1=53.8% 
TFN = 41.7% 

           J=NPVG1, J2=TFN 
               NPVG1=53.8% 
               TFN = 41.7% 

  Classified Group (%)  Classified Group (%)  Classified Group (%)                 Classified Group (%) 
  G1 G2 G3  G1 G2 G3  G1 G2 G3  G1 G2 G3 

Original
Group 

(%) 

G1 53.8 15.4 30.8 G1 53.8 15.4 30.8 G1 53.8 15.4 30.8 G1 53.8 15.4 30.8 

G2 36.4 36.4 27.2 G2 36.4 36.4 27.2 G2 27.3 63.6 9.1 G2 27.3 63.6 9.1 

G3 16.7 41.7 41.7 G3 16.7 41.7 41.7 G3 33.3 33.3 33.4 G3 33.3 33.3 33.4 

                 (a)              (b)               (c)               (d) 
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