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Abstract— Heart rate variability (HRV) is one of the promis-
ing directions for a simple and noninvasive way for ob-
structive sleep apnea syndrome detection. The time–frequency
representations has been proposed before to investigate the
non-stationary properties of the HRV during either transient
physiological or pathological episodes. Within the framework of
the filter–banked feature extraction, estimation of the spectral
splitting for stochastic features extraction is an open issue.
Usually, this splitting is fixed empirically without taking into
account the actual informative distribution of time–frequency
representations. In the present work, a relevance–based ap-
proach that aims to find a priori a boundaries in the frequency
domain for the spectral splitting upon t–f planes is proposed.
Results show that the approach is able to find the most
informative frequency bands, achieving accuracy rate over 75%.

I. INTRODUCTION

The obstructive sleep apnea syndrome (OSA) is a common
sleep disorder, characterized by obstruction in the airflow.
To perform OSA diagnosis, detection of repetitive episodes
of apnea and hypopnea during sleep is carried out, mostly,
by attended overnight polysomnography in a sleep labora-
tory. However, regarding to standard polysomnography test
the main disadvantage is the high amount of information
required to be analyzed [1], [2]. One of the promising
directions for a simple method for OSA detection is pro-
vided by an analysis based on the heart rate variability
(HRV) [3]. In this line of analysis, the time–frequency (t–
f ) representations, has been proposed before to investigate
the time–variant properties of the spectral parameters during
either transient physiological or pathological episodes [4].
Typically, two frequency bands are considered for OSA
detection: frequencies between 0.04 and 0.15 Hz (termed low
band LF), and frequencies between 0.15 and 0.5 Hz (termed
high band HF) [5]; nevertheless, there are some normal t–
f maps whose waveform resembles like pathological ones,
and vice versa; so, the spatial distribution of the energy in
each sub–band is not clear; for this reason, a set of t–f –
based stochastic features is considered. Usually, the tuning
of the suitable spectral splitting for the stochastic feature
extraction is carried out by dint of find the frequency sub-
bands according to the high accuracy [5]. The main problem
of this approach (called heuristic), is the uncertainty about
the physical meaning of the extracted features and the fact
that all the process is centered over an unknown number of
iterations. Therefore, it is necessary to find an approach for
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frequency sub–band selection in order to achieve the spectral
splitting for stochastic feature extraction. This study proposes
a relevance–based approach that aims to find a priori a
boundaries in the frequency domain for the spectral splitting.
The main idea is to improve the use of the more relevant
frequency bands for OSA detection, with end to extract filter–
bank based features from the HRV signal. Three different
relevance measures are considered: maximum variance as
non-supervised technique, and symmetrical uncertainty and
linear correlation as supervised techniques. For the sake of
comparison, the typical split approach based on performance
measures is tested. It must be noted that because of easier
medical interpretation, each way of spectral splitting over t–f
maps is carried out separately for each one of the two bands
of interest (LF and HF).

II. MATERIALS AND METHODS

A. Generation of t-f based Stochastic Features

Generally, a direct way of describing the HRV time series,
𝑦(𝑡), in both time and frequency (t–f ) domains becomes its
time–evolving spectral representation. In particular, power
spectral density is commonly used that is directly represented
by the spectrogram:

𝑺𝑦(𝑡, 𝑓) =

∣∣∣∣
∫
𝑇

𝑦(𝜏)𝜙(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏

∣∣∣∣
2

(1)

where 𝑡, 𝜏 ∈ 𝑇, 𝑓 ∈ Δ𝐹, 𝑺𝑦(𝑡, 𝑓) ∈ ℝ
+.

Supported on classical Fourier Transform, the Short Time
version (STFT) introduces a time localization concept by
using a tapering window function of short duration, 𝜙, that
is going along the underlaying biosignal, 𝑦(𝑡). Estimated t–f
representation matrix, 𝑺𝑦 ∈ ℝ

𝑇×Δ𝐹 , can be represented by
the row vectors, 𝑺𝑦 = [𝒔1 . . . 𝒔𝑓 . . . 𝒔Δ𝐹 ]

⊤, where 𝒔𝑓 =
[𝑠(𝑓, 1) . . . 𝑠(𝑓, 𝑡) . . . (𝑓, 𝑇 )] is each one of the estimated
spectral decomposition at frequency 𝑓 , and equally sampled
through the time axis 𝑡. In this study, OSA detection is
conducted by the set of short–time filter–banked features
{𝒙𝑛 : 𝑛 = 1, . . . , 𝑝}. This multi–band scheme splits the
whole frequency range Δ𝐹 into several sub–bands {𝐹𝑛},
comprising a set of adjacent spectral components {𝒔𝑓},
from where stochastic features are extracted independently.
That is, each assessed frequency sub–band 𝐹𝑛 from end to
end along the time domain holds the boundary of a single
stochastic feature 𝒙𝑛. In turn, each vector feature is attained
by filter bank modeling. For the sake of simplicity, this
study uses the set of Linear Frequency Cepstral Coefficients
(LFCC) as proposed in [5].
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B. Spectral Splitting upon t–f Planes

Within the framework of the filter–banked feature extrac-
tion, estimation of both the number of stochastic features 𝑝
as well as the the number of filter banks 𝑛𝐹 is provided
by using spectral splitting upon t–f plane. To this end,
each assessed frequency division from end to end along the
time domain holds the boundary of a single filter-banked
stochastic feature. The set of spectral partitions is determined
by one of the following approaches:

Heuristic Splitting: The selected bandwidth of interest
is split in equally spaced sub–band partitions obtaining
information about the spatial distribution of the energy. The
main idea is to cover all the possible combinations between
the number of filter banks 𝑛𝐹 and the number of features
i.e., an iterative process takes place by which the number of
filters is stepwise incremented. To evaluate the filter-banked
feature, a wrapper measure of performance is accomplished
after each iteration. The number of LFCC features providing
the maximum value of accuracy is selected as the proper
number 𝑝 of stochastic features to be considered.

Relevance–based Splitting: In this case, the frequency
band boundaries are determined by introducing a filter–type
measure of relevance to evaluate the whole t–f plane. Since
each feature vector 𝒙𝑛 contains a different amount of useful
information for OSA detection, the proposed relevance–
based splitting scheme emphasizes the most relevant sub–
bands. That is, the higher relevant the set of spectral compo-
nents {𝒔𝑓} of sub–band 𝐹𝑛, the more important the derived
stochastic feature 𝒙𝑛. The following supervised measures of
relevance as evaluation criteria are assessed [6]:

a. Linear Label-conditioned correlation that is given by

𝜌(𝑠(𝑡, 𝑓)∣𝒄) =

∣∣∣∣∣∣∣
𝑬{(𝑠(𝑖)(𝑡, 𝑓)− 𝑠(𝑡, 𝑓))(𝑐(𝑖) − 𝑐)}√

𝑬{(𝑠(𝑖)(𝑡, 𝑓)− 𝑠(𝑡, 𝑓))}𝑬{(𝑐(𝑘) − 𝑐)}

∣∣∣∣∣∣∣
, (2)

where 𝑠(𝑖)(𝑡, 𝑓) = 𝑬{𝑠(𝑖)(𝑡, 𝑓) : ∀𝑖}, the measured value
of 𝑠(𝑡, 𝑓)) for the 𝑖− object, 𝑖 = 1, . . . ,𝑀, and 𝑐(𝑖) =
𝑬{𝑐(𝑖) : ∀𝑖}. Likewise, 𝑐(𝑖) is the label of 𝑖− object given
to the 𝑠(𝑖)(𝑡, 𝑓). The notation 𝑬{⋅ : ∀𝜆} stands for the
expectation operator over variable 𝜆.

b. Symmetrical Label-conditioned Uncertainty given by:

𝜐(𝑠(𝑡, 𝑓)∣𝒄) = 𝑯{𝑠(𝑖)(𝑡, 𝑓) : ∀𝑖} −𝑯{𝑠(𝑖)(𝑡, 𝑓)∣𝑐(𝑖)}
𝑯{𝑠(𝑖)(𝑡, 𝑓) : ∀𝑖} −𝑯{𝑐(𝑖) : ∀𝑖}

(3)
being 𝑯{⋅ : ∀𝜆} the entropy operator over variable 𝜆.

c. Stochastic Variability: The following unsupervised mea-
sure of time–variant relevance is assessed [5]:

𝒈(𝑺𝑦; 𝜏) = [𝜒(1) ⋅ ⋅ ⋅ 𝜒(𝜏) ⋅ ⋅ ⋅ 𝜒(𝑝𝑇 )]⊤, (4)

where 𝜒(𝜏) = 𝑬{∣𝜆2
𝑗𝑣𝑗(𝜏)∣}, {𝜆𝑗 : 𝑗 = 1, . . . , 𝑞}

is the set of most relevant eigenvalues of matrix
𝑺𝑦, and scalar 𝑣𝑗(𝜏) is the respective element at 𝜏
moment, and 𝜏 = 1, . . . , 𝑝𝑇 indexes each one of
the relevance values computed for the whole time–
variant data set. To determine distinctly the rele-
vance related to each one of the stochastic variables,

Eq. (4) can be reallocated to the relevance matrix,
[𝒈1(𝑺𝑦; 𝑡) ⋅ ⋅ ⋅ 𝒈𝑓 (𝑺𝑦; 𝑡) ⋅ ⋅ ⋅ 𝒈Δ𝐹 (𝑺𝑦; 𝑡)]

⊤, where each row
𝒈𝑓 (𝑺𝑦; 𝑡) = [𝜒((𝑓−1)𝑇 +1) . . . 𝜒(𝑡) . . . 𝜒(𝑓𝑇 )] ∈ ℝ

𝑇×1

that is a sectioned version of vector 𝒈(𝑺𝑦; 𝜏) plainly holds
the contribution of the 𝒔𝑓− stochastic feature along the
fixed moments of time.

To measure the contribution of each spectral component,
a simple average is accomplished, i.e.,

𝜌(𝒔𝑓 ∣𝒄) = 𝑬{𝜌(𝑠(𝑖)(𝑡, 𝑓)∣𝒄) : ∀𝑡} (5a)

𝜐(𝒔𝑓 ∣𝒄) = 𝑬{𝜐(𝑠(𝑖)(𝑡, 𝑓)∣𝒄) : ∀𝑡} (5b)

𝑔𝑓 (𝒔𝑓 ) = 𝑬{𝒈𝑓 (𝑺𝑦; 𝜏) : ∀𝜏}, (5c)

Because of high level of correlation between each pair
of adjacent spectral components {𝒔𝑓 , 𝒔𝑓+1}, the main as-
sumption is that the minimum values of their measured
contribution should be considered as the boundaries of the
spectral sub–bands.

III. EXPERIMENTAL SETUP

A. Database

This collection holds 𝑀 = 70 electrocardiographic record-
ings from PhysioNet [7], each one including a set of ref-
erence annotations added every minute of the recording
indicating either the presence or absence of apnoea during
each segment of time. The recordings were subdivided in
three groups: apneic patients, with more than 100 min in
apnea, borderline patients, with total apnea duration more
than 5 and less than 99 min and control or normal patients,
with less than 5 min in apnea. From the database, 25
recordings were used as a training set for the classification
algorithms. A second group with 25 recordings was used as
a test set to measure the performance of the algorithms, as
recommended in [7].

B. Time–Frequency Representations Enhancement of Esti-
mated HRV Time Series

Automatic OSA diagnosis requires the extraction of HRV
time series from each ECG recording, which in turn can be
estimated precisely if an accurate recognition of the QRS
complex fiducial point is achieved. In this work, complex
detection is carried out by the procedure described in [5].
Then, based on spectral HRV signal properties, the STFT–
based quadratic spectrogram is computed by sliding Ham-
ming windows for the following set of estimation parameters:
32.5 ms processing window length, 50% of overlapping, and
512 frequency bins.

C. Splitting in Frequency-Domain Plane

It must be noted that because of easier medical interpreta-
tion, each way of spectral splitting over t–f maps is carried
out separately for each one of the two bands of interest (LF
and HF).

Selection of Frequency Sub–bands by Heuristic Ap-
proach:The procedure for tuning the heuristic approach is
described in the algorithm 1
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Input: HRV
Output: Frequency bands
foreach Class 𝑘 do

foreach Observation 𝑖 do

1) Compute t–f map (𝑘,𝑖) ∈ ℝ
Δ𝐹×𝑇 of the HRV signal;

end
end
foreach Filter bank 𝑗 = 1 : 𝑛𝐹𝑚𝑎𝑥 do

1) Compute 𝑗 stochastic features corresponding to 𝑗 triangular
filters linearly spaced over the frequency domain;

foreach Features subset 𝑝 = 1 : 𝑗 do

1) Create a features subset corresponding to the first 𝑝
LFCC;

2) Dimension reduction of the input data;
3) Obtain the accuracy for this feature subset with a k–nn

classifier

end
end

1) Select the frequency bands (𝑛𝐹 and 𝑝) when the accuracy rate be
maximized;

Algorithm 1: Algorithm for the frequency bands selection by
heuristic approach

The number of filters 𝑛𝐹 and the number of dynamic
features 𝑝, is selected according to the maximum value of
accuracy reached with a basic k–nn classifier. Figure 1 shows
the tuning of the approach, Figure 1(a) for the low frequency
band and Figure 1(b) for the high frequency band.

(a) Low band tuning (b) High band tuning

Fig. 1. On adjusting the number of t–f –based frequency bands.

Finally, the input data space includes the following 6 TFR–
based stochastic features to be further studied: the first 3 time
series of cepstral coefficients vector that are computed by
5 triangular response filters, with 10% overlap for the low
band; and the first 3 time series of cepstral coefficients vector
that are computed by 7 triangular response filters, with 10%
overlap for the high band.

Relevance–based Approach for Frequency Sub–bands Se-
lection: For the concrete case of OSA diagnosing, the split-
ting of the frequency axis for stochastic features extraction,
can be achieved using the relevance obtained for each
spectral sub–band. Three different measures are considered:
relevance based on linear correlation (Eq. 2), relevance based
on symmetrical uncertainty (Eq. 3) and relevance based on
maximum variance (Eq. 4). The algorithm 2 describes the
process for splitting the frequency axis by means of the
relevance measures.

Input: HRV
Output: Frequency bands
foreach Class 𝑘 do

foreach Observation 𝑖 do

1) Calculate t–f map (𝑘,𝑖) ∈ ℝ
Δ𝐹×𝑇 of the HRV signal;

2) Transform t–f representation into a vector ∈ ℝ
1×Δ𝐹𝑇 ;

end
end

1) Create a matrix concatenating the t–f representations vectors
∈ ℝ

𝑁×Δ𝐹𝑇 ;
2) Calculate relevance for each column of the matrix ∈ ℝ

1×Δ𝐹𝑇 ;
3) Reshape the relevance vector into a relevance matrix ∈ ℝ

Δ𝐹×𝑇 ;
4) Calculate a column vector containing the mean value of each row

of the relevance matrix ∈ ℝ
Δ𝐹×1;

5) Select the frequency bands where the relevance presents
significant changes on its behavior i.e. the local minimums of the
curve;

Algorithm 2: Algorithm for the frequency bands selection by
relevance analysis

Figure 2 shows the relevance matrices obtained with
the different measures along with the contribution of each
spectral sub–band in the left plots, as is proposed in Eq.
5. Table I shows the selected frequency bands. Each band
includes 1 time series of cepstral coefficients vector that is
computed by 1 triangular response filter.
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(a) Low band - linear correlation
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(c) Low band - symmetrical uncer-
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(d) High band - symmetrical uncer-
tainty
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(e) Low band - maximum variance
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(f) High band - maximum variance

Fig. 2. Selection of the frequency bands using relevance analysis.

IV. RESULTS AND DISCUSSION

The stochastic features obtained for each band individu-
ally, are used to create a new set of features. Because of
high computational cost of stochastic feature-based training,
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TABLE I

FREQUENCY BANDS SELECTION

Relevance Frequency Bands [Hz] # Features

Linear Correlation
LF

0.04− 0.05, 0.05− 0.11
3

0.11− 0.15

HF
0.15− 0.24, 0.24− 0.31

4
0.31− 0.39, 0.39− 0.50

Sym Uncertainty
LF

0.04− 0.06, 0.06− 0.08
4

0.08− 0.12, 0.12− 0.15

HF
0.15− 0.19, 0.19− 0.30

4
0.30− 0.50

Maximun Variance
LF

0.04− 0.07, 0.07− 0.10
3

0.10− 0.15

HF
0.15− 0.23, 0.23− 0.34

4
0.34− 0.46, 0.46− 0.50

a dimension reduction of the input space is carried out by
means of a time–evolving version of the standard PCA, as in
[5]. The different approaches are tested and compared using a
simple k–nn classifier, followed by a cross-validation proce-
dure, which consists on randomly select the same number of
observations for the training group and the test group. In turn,
Table II summarizes the minute–by–minute classification
accuracy performed for the different approaches for spectral
splitting and its respective set of stochastic features.

TABLE II

CLASSIFICATION ACCURACY

Approach # Features Acc [%]
Heursitic 6 75.42± 0.88

Relevance
Linear Correlation 7 75.64± 1.14

Symmetrical Uncertainty 7 74.80± 0.68
Maximun Variance 7 75.22± 0.58

Results show that both heuristic approach, and the
relevance-based approach, present similar performance, over
75%. As the spectral splitting for the first approach is cen-
tered over an unknown number of iterations on the accuracy
rate, with the aim of find the most informative frequency
sub–bands, it can be concluded that the relevance-based
approach is able to find a priori a boundaries in the frequency
domain for the extraction of the stochastic features in a less
complex way. Besides, it can be noted that the three different
measures, although find different behaviors in the relevance,
as is shown in Table I, the results do not change significantly.
Then it is difficult to select one single measure as the most
appropriate. Nevertheless, the measure based on maximum–
variance is computed taking into account the influence of
each variable over the whole set of features, and not only
the relation between the data and its respective label class;
so, this relevance measure could be directly associated with
the signal dynamic, which is convenient for the concrete case
of spectral splitting.

V. CONCLUSIONS

Several approaches for the spectral splitting upon t–f
planes in the concrete case of OSA detection are studied.
The first one, select the frequency bands as a compromise be-
tween the number of filters 𝑛𝐹 and the number of stochastic

features 𝑝 so that the classification accuracy be maximized.
The second one is based on finding the frequency boundaries
by means of a relevance measure, with aim to compute a
stochastic feature derived from each spectral sub-band, in this
case, cepstral coefficients. Results show the advantage of the
relevance based approach, due to the procedure for finding
the frequency bands is easier and the accuracy rates are
similar than the ones obtained with the heuristic approach.
Besides, the computational load is lower, since the frequency
bands selection is not achieved by means of a performance
measure. Regarding to feature extraction and selection, both
approaches show a classification accuracy of 75%, while in
[8] is reported an accuracy of 73%; consequently, the advan-
tage of the method proposed in this is evident. Nevertheless,
previous works show higher accuracy but with more complex
methods or more computed features [9].

As future work is proposed, in first instance, the use of
parallel combining k–nn classifiers, with aim to discriminate
between normal and pathological signals due to the different
dynamics in the filter-banked stochastic features, correspond-
ing to each frequency sub–band. Besides, is proposed the use
of different relevance measures that take into account both
the relation among spectral components and the relation with
the class labels.
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