
  

  

 
Abstract—Many clinical studies have shown that 

electroencephalograms (EEG) of Alzheimer patients (AD) often 
have an abnormal power spectrum. In this paper a frequency 
band analysis of AD EEG signals is presented, with the aim of 
improving the diagnosis of AD from EEG signals. Relative 
power in different EEG frequency bands is used as features to 
distinguish between AD patients and healthy control subjects.  
Many different frequency bands between 4 and 30Hz are 
systematically tested, besides the traditional frequency bands, 
e.g., theta band (4–8Hz). The discriminative power of the 
resulting spectral features is assessed through statistical tests 
(Mann–Whitney U test). Moreover, linear discriminant analysis 
is conducted with those spectral features. The optimized 
frequency ranges (4–7Hz, 8–15Hz, 19–24Hz) yield substantially 
better classification performance than the traditional frequency 
bands (4–8Hz, 8–12Hz, 12–30Hz); the frequency band 4–7Hz is 
the optimal frequency range for detecting AD, which is similar 
to the classical theta band. The frequency bands were also 
optimized as features through leave-one-out crossvalidation, 
resulting in error-free classification. The optimized frequency 
bands may improve existing EEG based diagnostic tools for 
AD. Additional testing on larger AD datasets is required to 
verify the effectiveness of the proposed approach. 

I. INTRODUCTION 
lzheimer’s disease (AD) is a neuro-degenerative 
disease, the most common form of dementia, third most 

expensive disease and sixth leading cause of death in the 
United States. It affects more than 10% of Americans over 
age 65, nearly 50% of people older than 85, and it is 
estimated that the prevalence of the disease will triple within 
the next 50 years [1, 2]. A promising diagnostic tool for AD 
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is electroencephalogram (EEG), which is obtained through 
specially designed electrodes located on the scalp.  

Because of its non-invasive, safe, and easy-to-use 
properties, EEG is considered as a high potential diagnostic 
tool for AD that may complement some of the current 
traditional AD diagnostic methods. However, diagnosing 
AD in EEG signals remains a challenging problem as most 
of the existing methods do not offer reliable diagnosis [3, 4]. 

Several studies have applied linear and non-linear 
classification algorithms to discriminate between the EEG 
signals of AD patients and age-matched healthy control 
subjects. To date, the classification performance of these 
algorithms is about 80%–90% [5], and hence there is still 
significant room for improvement. A promising strategy to 
improve the diagnostic power of EEG for AD is to carefully 
design and optimise time-domain and frequency-domain 
EEG features [6]. We follow that approach in this paper: we 
investigate the use of relative power within different EEG 
frequency bands as a feature to distinguish mild AD from 
healthy control subjects. As a result, we provide optimal 
EEG frequency bands that improve the diagnosis of AD. Our 
approach may help to improve existing EEG based 
diagnostic tools for AD. 

EEG is usually described in terms of its rhythmic activity, 
which is helpful in relating the EEG to the brain function. 
The rhythmic activity in EEG is commonly divided in 
specific frequency bands: 0.5–4Hz (delta), 4–8Hz (theta), 8–
10Hz (alpha 1), 10–12Hz (alpha 2), 12–30Hz (beta), and 30–
100Hz (gamma) [7]. Most of these bands are chosen 
arbitrarily, and have not been optimised for diagnostic 
purposes. 

EEG signals are often corrupted by noise and artifacts: 
50/60 Hz power line interference, motion and eye blinking 
artifacts, electromyogram (EMG) signals from muscles, and 
artifacts due to changes in the electrode-skin interface. 
Especially the gamma range (30–100Hz) has a low signal-
to-noise ratio, and therefore will be excluded from our 
analysis. In this study, we consider the frequency range 1-
30Hz, and investigate which EEG frequency band within 
that range maximizes the separability between mild AD 
patients and age-matched control subjects. As mentioned 
earlier, relative power of EEG frequency bands is used as a 
discriminative feature; more specifically, we compute the 
relative power of a frequency band within the range 1–30Hz 
(e.g. 1–5Hz) as the power of that band divided by the power 
of the “wide” frequency band 1–30Hz; as a consequence, 
relative power takes values between 0 and 1. 
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In the literature, different EEG frequency bands have been 
studied for diagnosis of AD, without systematically 
optimizing the EEG frequency range. Many studies consider 
a specific frequency band as a marker for AD: 

• 4–8 Hz [3, 8-11] 
• 7.8–12.87Hz [12]  
• 5–14Hz [13] 

Several studies use multiple frequency ranges as markers 
for AD:  

• 1.5–6.5Hz and 6.5–8.5Hz [5, 14] 
• 0.5–8Hz and 8–30Hz [6, 10] 
• 1–4Hz, 4–8Hz, 8–12Hz, 12–25Hz [15] 

In contrast to those studies, in this paper we 
systematically explore various frequency bands, with the 
aim of improving the diagnosis of AD from EEG. This paper 
is structured as follows. In the next section we discuss the 
EEG data that we use in this study. In Section III we explain 
our methodology and present our results. In Section IV we 
discuss our results and offer concluding remarks. 

II. EEG DATASET 
We consider EEG data of mild-AD patients and age-

matched control subjects. The EEG data set has been 
analyzed in previous studies [16-18]; the data was obtained 
using a strict protocol from Derriford Hospital, Plymouth, 
U.K., and had been collected using normal hospital practices 
[17]. EEGs were recorded during a resting period with 
various states: awake, drowsy, alert and resting states with 
eyes closed and open. All recording sessions and 
experiments proceeded after obtaining the informed consent 
of the subjects or the caregivers and were approved by local 
institutional ethics committees. EEG dataset is composed of 
24 healthy control subjects (age: 69.4±11.5 years old; 10 
males) and 17 patients with mild AD (age: 77.6±10.0 years 
old; 9 males). The patient group underwent full battery of 
cognitive tests (Mini Mental State Examination, Rey 
Auditory Verbal Learning Test, Benton Visual Retention 
Test, and memory recall tests). The EEG time series were 
recorded using 21 electrodes positioned according to 
Maudsley system, similar to the 10-20 international system, 
at a sampling frequency of 128 Hz. EEGs were band-pass 
filtered with digital third-order Butterworth filter (forward 
and reverse filtering) between 0.5 and 30 Hz. 

The recordings were conducted with the subjects in an 
awake but resting state with eyes closed, and the length of 
the EEG recording was about 5 minutes, for each subject. 
The EEG technicians prevented the subjects from falling 
asleep (vigilance control). After recording, the EEG data has 
been carefully inspected. Indeed, EEG recordings are prone 
to a variety of artifacts, for example due to electronic smog, 
head movements, and muscular activity.  For each patient, 
an EEG expert selected by visual inspection one segment of 
20s artifact free EEG, blinded from the results of the present 
study. From each subject in the two data sets, one artifact-
free EEG segment of 20s was extracted and analysed. 

III. METHODOLOGY 
Our aim is to select EEG features for diagnosis of AD. In 

particular, we focus on spectral features, i.e., relative power 
of EEG frequency bands. Our approach consists of three 
steps: spectral feature extraction, separability tests, and 
classification.  

A. Feature Extraction 
Many studies have shown that the EEG of AD patients 

has an abnormal spectrum [3, 6, 10, 13, 15, 19-21]. In 
particular, the EEG signals of AD patients tend to “slow 
down”: they contain more power in low-frequency bands 
compared to healthy age-matched subjects. However, as far 
as we know, no study so far has systematically explored 
different EEG frequency bands for the purpose of 
diagnosing AD. 

We compute the relative power in a frequency band 
[F:(F+W)]Hz as follows: 

1) Bandpass filter: a bandpass filter is applied to each 
EEG channel to extract the EEG data in specific 
frequency band [F:(F+W)]Hz. We use Butterworth filters 
(of third order)  as they offer good transition band 
characteristics at low coefficient orders; as a result, they 
can be implemented efficiently [22]. 

2) Relative Power: the relative power of a certain 
frequency band (extracted in the previous step) is obtained 
by dividing the power of this frequency band by the 
power of the total frequency band:  
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where ),( WFFPi + is the power of the frequency band 
[F,F+W] at channel i and ),( maxmin FFPi  is the power of 
the “wide” frequency range [1,30Hz]. 

3) Average Relative Power (ARP): the average relative 
power for each subject j is determined as 
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where ),( WFFRPi +  is the relative power of the 
frequency band [F,F+W] at channel i, and N is the 
number of EEG channels. (In our EEG data set, the 
number of channels is N = 21). 

B. Separability Test 
After calculating the ARP for all subjects in certain 

frequency band [F:(F+W)]Hz, we compute the average 
ARP for AD subjects and all healthy subjects, denoted by 

ADμ  and Ctrμ  respectively. Likewise, we compute the 
standard deviation of ARP within both populations, 
denoted by ADσ  and Ctrσ  respectively. 
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Fig. 1. The linear separation value J between Alzheimer and Control 
subjects, for relative power calculated over different frequency bands [F, 
F+W]. The x-axis represents the frequency F, the y-axis represents the 
width W, while the z-axis represents the linear separation J. For 
example, if the frequency F is 4Hz and the width is 3Hz, the 
corresponding frequency band is 4–7Hz and its J(4,7) value is 1.492; 
this happens to be the maximum linear separation in our study. The 
figure shows three peaks in J (see also Fig.2). 

Frequency (F) Hz

W
id

th
 (

W
)

 

 

5 10 15 20 25

5

10

15

20

25
0.2

0.4

0.6

0.8

1

1.2

1.4

 

Fig. 2. This is a 2D presentation of Fig.1; it shows the regions of (F,W) 
values with the highest index J(F,W). The x-axis represents the frequency 
F, the y-axis represents the width W, while the color indicates the linear 
separation value J. Three regions in the (F,W) plane can be distinguish 
with large J values. The three regions (from left to right) R1, R2, and R3 
include theta, alpha, and beta bands respectively. 

The linear separability criterion J is then computed:  
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We calculate the index J(F,F+W) over a range of 
frequency bands, i.e., F =1, 2, …, 29Hz and W = 1, 2, …, 29 
Hz, corresponding to 841 different frequency bands within 
[1,30Hz]; we depict the value J as a function of F and W in 
Fig. 1 (3D) and Fig. 2 (2D). Interestingly, Fig.2 reveals three 
peaks in J, representing the largest linear separation J 
between AD and Control subjects. 

Fig.2 illustrates the corresponding regions in the (F,W) 
plane. Fascinatingly, these regions R1, R2, and R3 contain 
the standard theta (4–8Hz), alpha (8–12Hz), and beta (12–
30Hz) frequency bands respectively. 

 

 
 
We sorted all 841 J(F,W) values in descending order. In 

Table I we list largest J values for each region separately, 
with the corresponding frequency bands [F,F+W]. As can be 
seen from that table, the maximum separation J between AD 
and Control subjects occurs for the 4–7Hz band, which lies 
in Region 1. In Region 2 the frequency band 8–25Hz has the 
largest linear separability J; that band covers the classical 
alpha and beta band. In the same region, also the band 8–
15Hz yields large J; that frequency band approximately 
corresponds to the standard alpha band (8–12Hz), yet yields 
larger J (not shown here).  In Region 3 the frequency band 
19-24 has the highest J value; it approximately corresponds 
to the standard beta band (12–30Hz).  

C. Mann–Whitney U Test  
The Mann-Whitney statistical test allows us to investigate 

whether the EEG statistics at hand (relative power of various 
frequency bands) take different values between the two 
subject populations. Low p-values indicate large difference 
in the medians of the two populations.  

D. Linear Discriminant Analysis (LDA) 
We apply linear discriminant analysis (LDA) with each 

spectral feature separately, with the aim of distinguishing 
AD patients from healthy control subjects. LDA has been 
used earlier for diagnosis of AD from EEG [5, 10, 15, 18, 
20, 23]. We assess the classification performance of LDA 
through leave-one-out (LOO) cross-validation. Each 
learning set is created by taking all the samples except one, 
and the corresponding test set is the sample left out. Thus, 
for n samples, we have n different training sets (each 
yielding a coefficients vector w) and n different test sets.  
We conduct this procedure for each spectral feature.  

TABLE I 
LINEAR SEPARABILITY INDEX J BETWEEN AD AND CTR SUBJECTS FOR 

DIFFERENT FREQUENCY BANDS IN THE THREE REGIONS (CF. FIG.2) 
 

Region 1 Region 2 Region 3 

F F+W J F F+W J F F+W J 

4 7 1.4917 8 25 1.3621 19 24 0.8809 

3 7 1.4761 8 24 1.3613 19 25 0.8767 
2 8 1.4301 8 26 1.3609 19 23 0.8717 
3 8 1.4050 8 23 1.3584 21 22 0.8674 
2 7 1.3629 8 27 1.3580 19 26 0.8665 
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Note that in this approach, the features are not selected 
through LOO; instead we analyze the discriminative power 
of each feature in terms of LDA classification error 
(assessed through LOO). We have also conduct feature 
selection through LOO, as we will discuss in the following 
section. 

IV. DISCUSSION AND CONCLUSION 
The performance of the frequency bands with largest linear 
separability J is displayed in Table II, where we consider the 
three regions separately (cf. Fig. 2); in Table III, we report 
results for the frequency bands with largest linear 
separability J overall, independent of the region; 
interestingly, those bands  all happen to be part of Region 1.   

As can be seen from Table II, the frequency band 4–7Hz 
(Region 1) yields the lowest p-value and the lowest LDA 
classification error; that band also has the largest separability 
index J. Interestingly, the band strongly resembles the 
classical theta band (4–8Hz), yet has vastly more 
discriminative power. Moreover, frequency band 8–15Hz 
(Region 2) achieves clearly better results as compared to 8–
12Hz (alpha band). Relative power in 4–7Hz and 8–15Hz 
seem to be good EEG markers for AD, at least for the data 
set at hand.  

In Region 3, the band 19–24Hz performs slightly better 
than 12–30Hz band (beta) in terms of classification error, 
but the corresponding p-values are comparable. 

The lowest p-value, after testing all frequency bands, has 
been obtained for the 4–7Hz band, consistent with the J 
criterion and LDA error results.  
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Fig. 3. Classification performance for distinguishing Alzheimer from 
Control subjects by means of LDA, for relative power calculated over 
different frequency bands [F, F+W]. The x-axis represents the 
frequency F, the y-axis represents the width W, while the z-axis 
represents the error scored from LDA classifier. The frequency band 4–
7Hz yielded the smallest classification error, which is consistent with J 
separability result in Fig. 1. 

 

Interestingly, the best results overall were obtained with 
the band 4–7Hz as shown in Fig. 3, whereas the band 4–8Hz 
(theta band) ranked only 46th according to the index J, and 
clearly yields lower classification performance. This shows 
that the discriminative power significantly varies with the 
choice of frequency band. So far in our discussion, we have 
not selected the spectral features in an automated fashion; 
we have simply assessed the discriminative power of each 
feature by means of various criteria.  

 

 

TABLE IV 
FREQUENCY BAND WITH THE SMALLEST LDA ERROR (COMPUTED 

THROUGH LOO) FOR EVERY TRAINING SET. NOTE THAT THERE ARE IN 
TOTAL 41 SUBJECTS AND HENCE THE SAME NUMBER OF TRAINING SETS.  

 

LOO Iteration Most Discriminative 
Frequency Band(s)  

LDA 
error 

1, 3, 4, 9, 10, 12, 13, 19, 20, 21, 22, 
23, 24, 26, 27, 28, 29, 30, 33, 34, 35, 
36, 37, 38, 39, 40, 41 

4-7Hz 2.5% 

7 3-7Hz 2.5% 

5 4-7Hz, 3-7Hz 2.5% 

32 4-7Hz, 3-7Hz 5% 

6 4-7Hz, 3-8Hz 2.5% 

16 4-7Hz, 5-7Hz 5% 

25 4-7Hz, 5-7Hz 2.5% 

8, 14, 18 4-7Hz, 3-7Hz, 3-8Hz 5% 

11, 15 4-7Hz, 3-7Hz, 5-7Hz 5% 

2, 17, 31 4-7Hz, 3-7Hz, 3-8Hz, 5-7Hz 5% 

TABLE III 
P-VALUES AND CLASSIFICATION ERRORS FOR FREQUENCY BANDS 

WITH LARGEST LINEAR SEPARABILITY J (TOP 5) 
 

 Top Frequency Bands  

 4-7Hz 3-7Hz 2-8Hz 3-8Hz 2-7Hz 

p-value 8.4×10-8 8.4×10-8 1.5×10-7 9.7×10-8 2.3×10-7 

Error of 
LDA 2.43% 4.87% 9.75% 7.31% 9.75% 

 

TABLE II 
P-VALUES AND CLASSIFICATION ERRORS ASSOCIATED WITH 

STANDARD AND OPTIMIZED FREQUENCY BANDS  
 

 Traditional Frequency Bands Optimized Frequency Bands 

Measures 4-8Hz 8-12Hz 
12-

30Hz 
4-7Hz 8-15Hz 

19-
24Hz 

p-value 5.3×10-7 4×10-7 1.2×10-5 8.4×10-8 3.5×10-7 1.7×10-5 

Error of 
LDA 12.2% 12.2% 24.4% 2.43% 7.3% 19.5% 
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As a last experiment, we select the spectral features 
through leave-one-out crossvalidation (LOO). In each 
training set (containing all subjects except one), the spectral 
features are ranked according to LDA classification error. 
The latter is in turn also computed by LOO, as we did in 
Section 3.D; however, here we do not consider the entire 
data set but a training set instead (containing all subjects 
except one).  

As a result, we obtain a table similar to Table I for every 
training set, which lists the classification error (instead of 
index J) for every spectral feature, in descending order. Next 
we select the spectral feature with the lowest classification 
error, and we conduct LDA with that feature on the training 
set. The resulting linear classifier (with optimized feature) is 
then evaluated on the remaining test sample; that procedure 
is repeated for every training set and corresponding test set.  

 
It is noteworthy that every test sample happens to be 

correctly classified; in other words, the classification error 
obtained through LOO feature selection is zero. 

Interestingly, again the frequency band 4–7Hz yields the 
lowest classification error for most training sets (see Table 
IV), and therefore, it seems to result in stable classifiers.  

 
Of course, it is important to point out that the data set at 

hand is fairly small. A larger sample size and a more diverse 
data set are needed in order to generalize the findings of this 
study. Multiple types of dementia and other neurological 
disorders can also be analyzed through our technique, which 
may further validate our results. The ultimate objective of 
this line of research is to determine the most appropriate 
EEG frequency bands for diagnosing AD (and potentially 
other neurodegenerative diseases) at an early stage using 
scalp EEG. 
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