
 
 

 

  

Abstract—An online seizure detection algorithm for long-
term EEG monitoring is presented, which is based on a period-
ic waveform analysis detecting rhythmic EEG patterns and an 
adaptation module automatically adjusting the algorithm to 
patient-specific EEG properties. The algorithm was evaluated 
using 4.300 hours of unselected EEG recordings from 48 pa-
tients with temporal lobe epilepsy. For 66% of the patients the 
algorithm detected 100% of the seizures. A mean sensitivity of 
83% was achieved. An average of 7.2 false alarms within 24 
hours for unselected EEG makes the algorithm attractive for 
epilepsy monitoring units. 

I. INTRODUCTION 
PPROXIMATELY one percent of the world’s popula-
tion suffers from epilepsy, a chronic dysfunction of the 
brain that is characterized by recurrent unprovoked and 

unpredictable seizures caused by an excessive discharge of 
groups of neurons. While 65% of epilepsy patients can be-
come seizure free using antiepileptic drugs, the remaining 
35% suffer from medically refractory epilepsy. Epilepsy 
surgery represents a valuable treatment option for some of 
these patients. Successful epilepsy surgery critically depends 
on a thorough presurgical evaluation. Long-term electroen-
cephalogram (EEG) recordings over several days are the 
corner stone for the presurgical workup for these patients. 
These recordings and their analysis are extremely time con-
suming and expensive. An automatic online seizure detec-
tion system would therefore be of great benefit. It would 
alert medical staff to a beginning seizure so that they can set 
appropriate medical actions improving patient safety and 
perform further systematic neurological testing during the 
seizure without continuously monitoring the EEG during the 
whole recording period. For offline analysis of long-term 
EEG recordings an efficient seizure detector could signifi-
cantly reduce the data review effort. Furthermore, reliable 
automatic detection of epileptic seizures is a key technology 
for closed-loop intervention systems that could interrupt 
seizures with electrical stimulation, drug infusion, cooling, 
or biofeedback [1-3]. 
The EpiScan seizure detector presented in this paper was 
developed as an alerting device for epilepsy monitoring units 
(EMU). Such an online-detection system must recognize an 
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occurring seizure through an analysis of the recorded EEG in 
real-time and with least possible latency. This requires an 
analysis of the EEG as a continuous data stream, where each 
new data sample is processed as soon as possible and alert-
ing decisions are made upon samples from the past only. The 
inputs to the algorithm are EEG recordings only. The elec-
trodes from the ten-twenty electrode system [4] are required 
as minimum channel set. Additional channels might improve 
the performance. The seizure detector has to produce seizure 
alerts or markers with the following four major require-
ments: 

1) High sensitivity: The algorithm must find as many sei-
zures as possible. Each missed seizure might bear potentially 
dangerous situations for the patient and reduces the chances 
for significant clinical findings. 

2) Low latency: In order to enable neuropsychological tests 
during a seizure without continuously monitoring the EEG, 
the epileptic activity must be detected with least possible 
latency. It should be noted that, in contrast to seizure predic-
tion, in seizure detection the goal is to create markers or 
alerts shortly after the first signs of a seizure become visible 
in the EEG. 

3) High specificity: The algorithm must produce as few 
false alarms as possible. This requirement is of great impor-
tance for the acceptance of an alerting device in clinical 
practice. A system producing too many false alerts might be 
ignored or even switched off. 

4) Easy-to-use: For usability in clinical practice an auto-
matic seizure detector must be parameter-free. It should not 
be required to adjust patient-specific parameters in order to 
achieve satisfying detection performances. 

For the development of a seizure detector numerous chal-
lenges must be met. First of all, a sufficiently large data set 
of annotated EEGs which have been recorded in an EMU 
must be available. For a fair performance evaluation, annota-
tions must be made from the EEG only, i.e., without videos 
showing clinical signs, which are not observable for the 
EEG-based detection algorithm. 
A major reason why seizure detection is still a challenging 
problem is the high inter-patient variability of the EEG. 
Patients have various ages, epilepsy syndromes and even 
multiple additional diseases. Algorithms have to adapt to the 
properties of each patient’s EEG since patient-specific pa-
rameters cannot be adjusted manually.  
Large scale temporal changes in the characteristics of EEGs 
lead to further challenges. E.g., varying EEG characteristics 
due to sleep-/wake-stages or variations of signal quality due 
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to changing electrode-tissue-impedances cause problems that 
can be faced by means of adaptation methods. 
After all, strong signal artifacts are inevitable if recordings 
last for several days. All kinds of artifacts must be consi-
dered, but movement artifacts, chewing artifacts, eyelid 
fluttering artifacts might cause the most problems in an 
automatic seizure detection system. 
Seizure detection has a long history of scientific publica-
tions. Moreover, it is already available in commercial soft-
ware packages. However, to our knowledge the acceptance 
of these packages in epilepsy centers is poor. One major 
reason for this might be that false alarm rates are still too 
high for everyday use, when EEGs are unselected.  
One of the most prominent attempts to seizure detection was 
made by Gotman [5], based on a decomposition of the EEG 
into elementary waves and the detection of paroxysmal 
bursts of rhythmic activity. Gotman published another, 
Bayesian approach in [6]. EEG recording systems e.g. from 
Stellate Systems, Inc. and from NIHON KOHDEN are 
available with a seizure detection algorithm from Gotman.  
The performance of another algorithm called “Reveal” was 
analyzed in[7]. This algorithm is based on Matching Pursuit 
and designed to identify particularly rhythmic components. 
The Reveal algorithm is commercially available e.g. in 
NIHON KOHDEN devices and in the EEG software pack-
ages from Persyst Development Corp. 
Recently Optima Neuroscience, Inc. offered another seizure 
detector called IdentEvent [8]. It is based on pattern-match 
regularity statistic (PMRS), local maximum frequency 
(LMF), and amplitude variation (AV). 
Promising detection performance was also achieved in an 
algorithm presented in [9], where seven EEG signal features 
are used as inputs of a support vector machine. 
In this paper, we present a seizure detection algorithm based 
on the Periodic Waveform Analysis [10] with a novel base-
line adaptation module. This algorithm has been imple-
mented in C++ and is about to be introduced as an online 
alerting system in a clinical environment in 2011. Here we 
present the results from an off-line analysis of the detection 
performance, whereby online processing was simulated. 

II. MATERIALS AND METHODS 

A. Algorithm 
The EpiScan algorithm consists of six building blocks, 
which are illustrated in Fig. 1.  
 

 
 

Fig. 1: Block diagram of the EpiScan seizure detection algorithm. 

The EEG signals are sequentially processed by the modules 
“Artifact detection”, “Seizure detection montage”, “Periodic 

Waveform Analysis”, “Baseline adaptation”, “Classifica-
tion”, and “Alpha rhythm suppression”, which will be de-
scribed in the following: 

1)  Artifact detection: The first module detects and marks 
epochs of impaired signal quality, mainly caused by technic-
al problems like dry electrodes, strong interferences from 
external electrical devices, saturating amplifiers or analog-
to-digital converters, or strong movement artifacts. This 
artifact detection is based on simple signal features like EEG 
amplitudes, EEG variances, and singularities of power spec-
tral densities. 

2) Seizure detection montage: In the visual EEG analysis 
three montages are commonly used: referential montages, 
longitudinal montages and transversal montages. We created 
a special seizure detection montage that includes all referen-
tial channels, and a selection of the most important bipolar 
channels out of the transversal and longitudinal montages. 
This selection was chosen manually, but is kept constant for 
all patients.  

3) Periodic Waveform Analysis: The core of the EpiScan 
seizure detection algorithm is an algorithm called periodic 
waveform analysis (PWA), which was designed to detect 
rhythmic EEG patterns [10]. For temporal lobe epilepsies, 
these are the most frequent patterns. The PWA starts with a 
calculation of the total harmonic energy ܧఛ of an EEG signal 
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which is calculated for cycle durations ߬ within a range  
߬min ൑ ߬ ൑ ߬max . 

The rectangular time window ߰௧ selects ݔ௧ within an interval 
centered about ݐ ൌ 0 and must be chosen such that the ener-
gy is bounded. A maximization of ܧఛ in (1) yields the domi-
nant cycle duration ߬̂ and subsequently the Periodic Energy 
Index (PEI) defined as 

PEI ൌ ఛොܧ . (2) 
The signal energy corresponding to a cycle-duration τ is 
defined as  
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Finally the periodic waveform index (PWI) is defined as 

PWI ൌ
ఛොܧ

ఛܰො
. (3) 

This is the ratio of Eத in (1) and ఛܰ in (3) evaluated at domi-
nant cycle-duration ߬̂. The PWI is unity for perfectly rhyth-
mic (periodic) signals and approaches zero for totally non-
rhythmic signals. 

4) Baseline adaptation: The time-varying dynamics of 
epileptic seizures and the high inter-patient variability make 
their detection difficult. Similar to the approach presented in 
[11] PWI values are split into three frequency bands ܹܲܫఋ, 
ఈ. Then the P-th percentiles ఋܶܫܹܲ ఏ, andܫܹܲ

௉ሺݐ, ݀ሻ, 
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௉ሺݐ, ݀ሻ of the separated PWI values within a 
time window ranging from ݐ െ ݀ to ݐ are calculated and used 
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to normalize the PWI values. The window range ݀ should be 
chosen in the order of two to four hours. 

5) Classification: In this module a classification of the 
normalized values of ܹܲܫఋ, ܹܲܫఏ, ܹܲܫఈ, ܲܫܧఋ, ܲܫܧఏ, and 
 ఈ leads to seizure alerts. This classifier is designed suchܫܧܲ
that PWI values must be above fixed thresholds and PEI 
values must be within certain ranges defined for each band 
separately. Contiguous alerts with a distance of less than 30 
seconds are merged into single seizure alerts, since it is 
assumed that they do belong to the same seizure.  

6) Alpha-rhythm suppression: When seizures are detected 
based on rhythmic patterns, alpha rhythms can be a signifi-
cant source of false alarms. In order to reduce these false 
detections to an acceptable level, the maximum amplitude of 
each pattern in the alpha band is localized by means of the 
PEI in (2). This information can be used to suppress occipit-
al and parietal alpha rhythms. 

B. EEG data and basic truth 
The EpiScan seizure detection algorithm was tested with 
EEG recordings from 48 patients with temporal lobe epilep-
sy (TLE). The recordings from 38 patients included seizures, 
for 10 patients no seizures could be recorded. The complete 
data contain 4.300 hours of EEG including 224 seizure an-
notations. All recordings where retrieved from an epilepsy 
monitoring unit and taken “as they are”, i.e., data were not 
selected according to their signal quality.  
In order to analyze the performance of a seizure detection 
algorithm, annotations of seizures that are visible in the EEG 
are required. However, the original annotations in the EEGs 
additionally contain markers of seizures that have been re-
ported by patients only, or those which could be recognized 
via clinical signs in the video recordings. Thus we created a 
list of annotations of seizures that could be recognized in the 
EEG, without watching the videos and using the following 
procedure: 
Two EEG technicians were asked to re-evaluate the EEG 
recordings of a set of “potential seizure markers” including 
the following positions: 
1) All original seizure markers from the clinical reports, 

which were obtained from the video-EEG. 
2) A set of “false alarms” of a previous version of the 

presented seizure detector. Hereby we chose the false 
alarms featuring the highest PWI values, i.e., the most 
rhythmic patterns that have not been marked as a sei-
zure in the clinical report. 

3) A randomly chosen set of arbitrary markers. 
These sets were chosen such that 50% of the positions were 
original seizure markers, 35% featured high PWI values, and 
15% were chosen randomly. 
The EEG technicians reviewed these EEG positions without 
access to clinical reports and without video recordings. They 
were asked to rate each potential marker with the following 
categories:  
1) Certainly a seizure (>90%) 
2) Probably a seizure (>75%) 
3) Rather a seizure (>50%) 
4) Rather not a seizure (<50%) 

5) Probably not a seizure (<25%) 
6) Certainly not a seizure (<10%) 
We considered markers rated with either “Certainly a seizure 
(>90%)”, “Probably a seizure (>75%)”, or “Rather a seizure 
(>50%)” being electrographically visible EEG seizure mark-
ers for performance evaluation.  

C. Performance analysis 

1) Sensitivity: The detection sensitivity was evaluated as 
follows: Each marker of electrographically visible seizures 
(cf. Subsection II B) that intersects with a seizure alert from 
the algorithm is regarded as true positive event, whereas 
each seizure marker with no intersection is a false negative 
event. For each patient with recorded seizures the sensitivity 
is determined as the ratio of true positives and the total num-
ber of recorded seizures. We evaluate these sensitivities by 
means of histograms and by calculating the mean over all 
patients (with seizures). Averaging over patient-wise sensi-
tivities is done since seizure counts of the patients are not 
equally distributed.  

2) False alarm rate: The false alarm rate is also calculated 
patient-wise. Long contiguous markers from an automatic 
seizure detector create a higher review effort than short ones, 
which can be inspected on a single EEG screen. In order to 
accommodate this fact, each seizure alert is divided into 
multiple sub-markers of maximally 30 seconds, meaning 
that each of these markers contributes to the false alarm rate. 
Each sub-alert that does not intersect with a true seizure 
marker (basic truth) is regarded as a false alarm. The number 
of false alarms for one patient divided by the total number of 
hours of EEG recordings for this patient gives the false 
alarm rate. False alarm rates are also evaluated by means of 
histograms and by calculating the mean over all patients 
(with seizures). 

III. RESULTS 
From 224 original seizure annotations in the EEGs 186 were 
rated as electrographically visible seizure marker (cf. Sub-
section II.B). The remaining 38 annotations were rejected as 
electrographically invisible. 

 
 

Fig. 2: Histogram of sensitivities. For 8% of the patients sensitivity was 
lower than 25%, for 5% sensitivity was between 25% and 50%, for 16% of 
the patients sensitivity was between 50% and 75%, for 5% it was between 
75% and 99%, and for 66% of the patients it was 100% (all seizures de-
tected). 
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The EpiScan was evaluated with the EEG recordings from 
patients with seizures as described above. We obtained a 
mean sensitivity of 83%, i.e., on average over all patients 
more than 4 out of 5 seizures were successfully detected. 
However, the distribution of patient-wise sensitivities is 
strongly non-symmetric. Thus a histogram is depicted in Fig. 
2, yielding more precise information. For 66% of the pa-
tients with seizures (N=25) the algorithm detected actually 
all seizures and for only 13% of the patients (N=5) it showed 
sensitivities below 50%. 
From our evaluation of patient-wise false alarm rates we 
obtained an average value of 0.30 FA/h for all data, includ-
ing patients with no seizures (N = 48). Again, due to the 
strong non-symmetric distribution of these values we present 
the false alarm rates by means of a histogram in Fig. 3. Here 
it can be seen that for 40% of the patients (N=19) there was 
less than one false alarm every five hours, and for 65% of 
the patients (N = 31) there was less than one false alarm 
every 3 hours. For 85% of the patients (N=41) we had less 
than one false alarm every two hours and the remaining 15% 
of the patients (N=7) the false alarm rate was between 0.5 
and 1 FA/h. 
 

 
 

Fig. 3: Histogram of false alarm rates. For 40% of the patients the false 
alarm rate was below 0,2 FA/h, for 25% it was between 0,2 and 0,33 FA/h, 
and for 21% of the patients the false alarm rate was between 0,33 and 0,5 
FA/h. Only 15% showed a false alarm rate between 0,5 and one FA/h. 

IV. DISCUSSION 
In this paper EpiScan, an algorithm for seizure detection in 
epilepsy monitoring units, was presented and its perfor-
mance was evaluated in terms of sensitivity and false alarm 
rate. The core of EpiScan is a periodic waveform analysis, 
an algorithm which detects rhythmic EEG patterns that can 
be found most frequently in epileptic seizures. A baseline 
normalization module performs adaptations to patient-
specific EEG properties, leading to a completely parameter-
free seizure detection system. 
In the performance evaluation using EEGs from 48 TLE 
patients we achieved 100% sensitivity for 66% of the pa-
tients and a mean sensitivity of 83%. The mean false alarm 
rate was 0.3 FA/hour or 7.2 FA within 24 hours. These re-
sults were obtained with EEGs that had not been preselected, 
thus we believe that the EpiScan algorithm can provide a 
substantial benefit for epilepsy monitoring units. 
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