
Optimal Design of a Bank of Spatio-Temporal Filters for EEG Signal
Classification

Hiroshi Higashi and Toshihisa Tanaka

Abstract— The spatial weights for electrodes called common
spatial pattern (CSP) are known to be effective in EEG
signal classification for motor imagery based brain computer
interfaces (MI-BCI). To achieve accurate classification in CSP,
the frequency filter should be properly designed. To this end,
several methods for designing the filter have been proposed.
However, the existing methods cannot consider plural brain
activities described with different frequency bands and different
spatial patterns such as activities of mu and beta rhythms. In
order to efficiently extract these brain activities, we propose
a method to design plural filters and spatial weights which
extract desired brain activity. The proposed method designs
finite impulse response (FIR) filters and the associated spatial
weights by optimization of an objective function which is a
natural extension of CSP. Moreover, we show by a classification
experiment that the bank of FIR filters which are designed by
introducing an orthogonality into the objective function can
extract good discriminative features. Moreover, the experiment
result suggests that the proposed method can automatically
detect and extract brain activities related to motor imagery.

I. INTRODUCTION

Electroencephalography (EEG)-based brain computer in-
terface (BCI) is a challenging application in biomedical engi-
neering. Since changes of energies of rhythmically oscillating
components related movements of limbs are observed in an
EEG signal, so-called motor imagery based BCI (MI-BCI)
is a promising paradigm of BCI [1], [2].

An efficient method for extracting the brain activity for
MI-BCI is the common spatial pattern (CSP) [3], which
uses spatial weights that extract the most discriminative
information. The spatial weights minimize the variance ratio
of the spatio-filtered signals for two classes in a learning
dataset. Although together with the spatial weights, an input
EEG signal is successfully classified, for the effective imple-
mentation, the observed signal should be bandpass-filtered to
extract frequency components associated with motor imagery
activities [3]. For the bandpass filtering, a passband of 7–
30Hz is typically chosen in MI-BCI [1], [3]–[6]. However,
the optimum frequency band for classification is highly de-
pendent on users and measurement environments [3]. There-
fore, it is crucial to find an optimal filter for classification in
MI-BCI. Recently, several approaches to this problem such as
common spatio-spectral pattern (CSSP) [4], common sparse
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spectral spatial pattern (CSSSP) [5], and spectrally weighted
CSP (SPEC-CSP) [6] have been proposed.

The brain activities observed in the bands of 8–13 Hz
(called mu rhythm which is generated in a sensorimotor area)
and 13–30 Hz (called beta rhythm which is mainly generated
in a sinciput area) are used as features in MI-BCI [2],
because the band of 7–30 Hz is generally specified in the
CSP procedure. However, because CSP, CSSSP, and SPEC-
CSP use only one frequency filter, these methods cannot
efficiently extract plural brain activities occurring in different
frequency bands and different spatial patterns such as mu
and beta rhythms. Moreover, as well as frequency bands, the
spatial patterns of the brain activities highly depend on users
and measurement environment [1].

This paper provides a new method to automatically design
a bank of frequency/spatial filters using learning datasets.
In the proposed method, we introduce into the CSP cost
function the additional parameters representing coefficients
of an finite impulse response (FIR) filter. That is, the
proposed cost function provides optimization of parameters
including spatial weights and the FIR filter coefficients.
Moreover, to extract multiple FIR filters, we add to the
optimization problem the constraint that the vectors whose
elements are coefficients of filters are orthogonal to each
other. An optimization procedure based on the alternating
least square (ALS) is used to solve the proposed optimization
problem, where the optimization problem is divided into
several subproblems. Each subproblem is reduced to gen-
eralized eigenvalue problem, which can be solved by a well-
established optimization method. In the experimental section,
it has been shown that features extracted by a bank of spatio-
temporal filters given by the proposed method are effective
and superior for classification in MI-BCI.

II. COMMON SPATIAL PATTERN (CSP)

We first review a basic CSP method [3]. Let X ∈ RM×N

be a matrix representing observed signals, where M is the
number of channels and N is the number of samples. The
CSP finds a spatial weight vector, w ∈ RM , in such a way
that the variance of a signal extracted by linear combination
of X and w is minimized in a class [3]. In BCI application,
we do not directly useX , but use the filtered signal described
as X̂ = H(X) in CSP, where H is a bandpass filter
which enhances brain activity of motor imagery. Denote the
components (vectors) of X̂ by X̂ = [x̂1, . . . , x̂N ], where
x̂n ∈ RM and n is the time index. The time average of
the observed signal is given by µ = N−1

∑N
n=1 x̂n. Then,

the time variance of the extracted signal of X̂ is given by
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σ2(X,w) = N−1
∑N

n=1 |wT (x̂n − µ)|2, where ·T denotes
the transpose of a vector or matrix. We assume that sets
of the learning data are represented as C1 and C2, where
Cd contains the signals belonging to class d, d represents a
class label chosen in {1, 2}, and C1 ∩ C2 = ∅. CSP finds
the weight vector that minimizes the intra-class variance in
Cc under the normalization of samples, where c is a class
label. More specifically, for class, c, fixed, CSP finds wc by
solving the following optimization problem [3];

min
w

EX∈Cc
[σ2(X,w)],

subject to
∑

d=1,2

EX∈Cd
[σ2(X,w)] = 1, (1)

where EX∈Cd
[·] denotes the expectation over Cd. Then, (1)

can be rewritten as

min
w

wT Σcw, subject to wT (Σ1 + Σ2)w = 1, (2)

where Σd are defined as Σd = EX∈Cd
[N−1

∑N
n=1(x̂n −

µ)(x̂n − µ)T ], for d = 1, 2. The solution of (2) is given
by the generalized eigenvector corresponding to the smallest
generalized eigenvalue of the generalized eigenvalue problem
described as

Σcw = λ(Σ1 + Σ2)w. (3)

Though the solution of (2) is given by the eigenvector
corresponding to the smallest eigenvalue in (3), we can use
the other eigenvectors for feature extraction [4]–[6]. The M
eigenvectors can be obtained by solving (3) as ŵ1, . . . , ŵM ,
where ŵi is the eigenvector corresponding to the i-th largest
eigenvalue of (3). We assume that the 2r eigenvectors are
used to classify an unlabeled data, X . Then we obtain the
feature vector, y ∈ R2r, from X defined as

y =[σ2(X, ŵ1), . . . , σ2(X, ŵr),

σ2(X, ŵM−r+1), . . . , σ2(X, ŵM )]T .
(4)

For classification, y is input to a classifier.

III. FIR FILTER DESIGN METHOD

As mentioned earlier, the classification accuracy depends
on the choice of the bandpass filter H [3]. In this section, we
present the method for designing a bank of spatio-temporal
filters. We develop a cost function to design the bank of filters
and an optimization procedure of the cost function using an
alternating optimization.

A. Feature Extraction

Let θp, p = 1, . . . , P be the filter coefficients of an FIR
filter where P is the order of the filter, and the filtered signal
of X denoted as X̂ = [x̂1, . . . , x̂K ], can be defined as x̂n =∑P

p=1 θpxn+P−p for n = 1, . . . ,K, where K = N −P +1.
The variance of the filtered signal with the spatial weight is

α(X,w,θ) =
1
K

K∑
n=1

∣∣∣∣∣wT
P∑

p=1

θpxn+P−p − µ

∣∣∣∣∣
2

, (5)

where a vector of w acts as spatial weights, θ is
the vector of the filter coefficients defined as θ =

[θ1, . . . , θP ]T , and µ is the time average given by µ =
K−1

∑K
n=1w

T
∑P

p=1 θpxn+P−p. We define An, n =
1, . . . ,K, whose elements are from X defined as

[An]m,p = [X]m,n+P−p, (6)

where m = 1, . . . ,M , p = 1, . . . , P and [·]i,j denotes the
entry in ith row and jth column of a matrix. Therefore, (5)
can be modified to

α(X,w,θ) =
1
K

K∑
n=1

∣∣∣wT Ânθ
∣∣∣2 , (7)

where Ân is defined as Ân = An −K−1
∑K

m=1Am.

B. Design Criteria and Optimization
For the feature value defined in (7), we design F frequency

filters and the associated spatial weights. Let wi and θi

for i = 1, . . . , F be the spatial weights and the coeffi-
cients of filters, respectively. The underlying idea behind
the proposed method is to find optimal value of both wi

and θi by maximization of α(X,wi,θi) with respect to
X ∈ Cc under the normalization of samples. Additionally,
to obtain the different filter coefficients in each θi, we
introduce an additional constraint that θi, i = 1, . . . , F are
mutually orthogonal. Therefore, we formulate the following
maximization problem;

max
wi,θi,i=1,...,F

F∑
i=1

Ĵ(wi,θi),

subject to
θT

k θj

‖θk‖ ‖θj‖
= δkj , k, j = 1, . . . , F,

(8)

where

Ĵ(w,θ) =

∑
d=1,2EX∈Cd

[α(X,w,θ)]
EX∈Cc

[α(X,w,θ)]
, (9)

c is an optional class label, and δij is the Kronecker delta
defined as 1 for i = j and 0 otherwise. In (8), the cost
function can be divided with respect to a filter index, i,
howeverwi and θi should be update when other optimization
parameters, wj and θj , are changed due to the orthogonal
constraint where j ∈ {k|k = 1, . . . , F, k 6= i}. Then, we
optimize wi and θi in an order of 1 to F , that is, the filters,
θ1, . . . ,θi−1, are already fixed in the optimization step for
wi and θi. By sequential optimization, we can represent (8)
with respect to each i as

max
wi,θi

Ĵ(wi,θi)

subject to θT
i θj = 0, j = 1, . . . , i− 1.

(10)

In (10), since we cannot seek for wi and θi simultaneously,
we adopt alternating optimization procedure based on ALS.
Two subproblems that separately find wi and θi are obtained
as follows.

The first subproblem is to optimize wi while fixing θi.
Define Rd(θ) = EX∈Cd

[
K−1

∑K
n=1 Ânθθ

T ÂT
n

]
for d =

1, 2. Then (8) can be written as

max
wi

Ĵ1(wi|θi) =
wT

i (R1(θi) +R2(θi))wi

wT
i Rc(θi)wi

. (11)

6101



The solution of (11) is given by the generalized eigenvector
corresponding to the largest generalized eigenvalue of the
generalized eigenvalue problem described as

(R1(θi) +R2(θi))wi = λRc(θi)wi. (12)

We normalize wi to unit norm.
The second subproblem is to optimize θi while fixing

wi. Define Qd(w) = EX∈Cd

[
K−1

∑K
n=1 Â

T
nww

T Ân

]
for d = 1, 2. Then (10) can be written as

max
θi

Ĵ2(θi|wi) =
θT

i (Q1(wi) +Q2(wi))θi

θT
i Qc(wi)θi

,

subject to θT
i θj = 0, j = 1, . . . , i− 1.

(13)

The solution to (13) is given by the following theorem.
Theorem 1: When maticesQc(wi) andQ1(wi)+Q2(wi)

are nonsingular, the solution of (13) is given by the unit-
length generalized eigenvector corresponding to the largest
generalized eigenvalue of the generalized eigenvalue problem
described as

G(Q1(wi) +Q2(wi))θi = ζQc(wi)θi, (14)

where
G =IP −H(HTQc(wi)H)−1

×HT (Q1(wi) +Q2(wi))
−1
,

(15)

H is the matrix by the already optimized filters defined as

H = [θ1, . . . ,θi−1] ∈ RP×(i−1), (16)

IP is the P × P identify matrix, and ζ is an eigenvalue.
Proof: For convenience, we define Qc = Qc(wi) and

Q = Q1(wi) +Q2(wi). Any vector θi can be normalized
such that θT

i Qcθi = 1, its norm becomes any value, and
Ĵ2(θi|wi) keeps unchanged. Therefore, the maximization of
Ĵ2(θi|wi) is equivalent to the maximization of θT

i Qθi with
the constraint that θT

i Qcθi = 1. Then the Lagrangian of (13)
is

L = θT
i Qθi − ζ(θiQcθi − 1)−

i−1∑
j=1

νjθ
T
i θj , (17)

where ζ and ν1, . . . , νi−1 are Lagrange multipliers. The
partial derivative of L with respect to θi is

∂L

∂θi
= 2Qθi − 2ζQcθ −

i−1∑
j=1

νjθj . (18)

Then, ∂L/∂θi is zero when ζ = (θT
i Qθi)/(θT

i Qcθi),
because multiplying ∂L/∂θi = 0 by θT

i is

2θT
i Qθi − 2ζθT

i Qcθi −
i−1∑
j=1

νjθ
T
i θj = 0, (19)

where the third term in the left equation is zero because
θT

i θj = 0 for i 6= j. Next, we use H defined as (16)
and ν defined as ν = [ν1, ν2, . . . , νi−1]T . Then, multiplying
∂L/∂θi = 0 by HTQ−1

c is 2HTQ−1
c Qθi−HTQ−1

c Hν =
0, because 2ζHTQ−1

c Qcθi = 0. Thus,

ν = 2(HTQ−1
c H)−1HTQ−1

c Qθi. (20)

Algorithm 1 Design of a bank of spatio-temporal filters

Input: C1, C2: the sets of learning data of X ∈ RM×N .
Parameter: P : the filter order, F : the number of FIR
filters.
Output: ŵ(m)

i , θi (for i = 1, . . . , F , m = 1, . . . ,M ).

for i = 1, . . . , F do
Initialize θi.
Set the index of iteration as k = 0.
repeat
k ← k + 1
Update wi by solving (11).
Update θi by solving (13).
Calculate cost, Ck from the cost function, Ĵ(wi,θi).

until Ck − Ck−1 is sufficiently small.
Obtain M spatial weights, ŵ(1)

i , . . . , ŵ
(M)
i , by (12).

end for

Substituting (20) into ∂L/∂θi = 0 can be written as

2Qθi − 2ζQθi − 2H(HTQ−1
c H)−1HTQ−1

c Qθi = 0
GQθi = ζQcθi, (21)

where G is defined in (15). Since ζ is the criterion to be
maximized, the maximum solution of (13) is achieved by
the unit-length generalized eigenvector corresponding to the
largest generalized eigenvalue of (14).

As introduced in above, we alternately optimize wi and
θi by solving optimization problem (11) and (13) for each
index, i. We optimize the filters and the spatial weights in
the order of {w1,θ1} to {wF ,θF }. In the optimization, the
initialization of θi and wi is an important topic. However,
we do not discuss the initialization problem in this paper. We
adopt a simple initialization way as follows: initialize θi as
a random vector which is orthnormalized from θ1, . . . ,θi−1

by the Gram-Schmidt orthnormalization.

C. Feature Vector Definition

We use the eigenvectors given by (12) as the spatial
weights for feature extraction. Let θi, i = 1, . . . , F be the
filters given by (8). By solving (12) with θi, we obtain M ·F
eigenvectors as ŵ(m)

i for i = 1, . . . , F and m = 1, . . . ,M ,
where ŵ(m)

i is the unit-length eigenvector corresponding
to m-th largest eigenvalue of (12). We assume that the 2r
eigenvectors for each θi are used for feature extraction. Then
the feature vector, y ∈ R2r·F , is defined as

y =[α(X, ŵ
(1)
1 ,θ1), . . . , α(X, ŵ

(r)
1 ,θ1),

α(X, ŵ
(M−r+1)
1 ,θ1), . . . , α(X, ŵ

(M)
1 ,θ1), . . . ,

α(X, ŵ
(1)
F ,θF ), . . . , α(X, ŵ

(r)
F ,θF ),

α(X, ŵ
(M−r+1)
F ,θF ), . . . , α(X, ŵ

(M)
F ,θF )].

(22)

As well as the case of CSP, we input y to a classifier. The
procedure to design frequency/spatial filters is summarized
in Algorithm 1 as a pseudo-code.
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TABLE I: Classification accuracy [%] given by 5×5 CV.
The figures in the round brackets beside accuracies represent
the number of dimensions of the feature vector. The column
labeled “(Param)” shows the value of the parameters used in
the proposed method. In the brackets in the column, the first
and second elements represent the number of filters, F , and
the number of spatial weight vector, 2r, for each filter.

Subject
Method aa al av aw ay
CSP-Ref 88.4 (4) 98.6 (2) 74.4 (10) 99.9 (6) 92.4 (4)

CSP 81.7 (2) 94.6 (6) 68.3 (8) 95.9 (6) 89.6 (2)
CSSP 84.1 (2) 95.4 (10) 69.9 (8) 96.9 (6) 90.5 (2)

SPEC-CSP 84.7 (10) 95.3 (6) 59.0 (20) 96.9 (6) 83.4 (4)
Proposed 89.4 98.1 70.1 99.1 95.0
(Param.) (10, 4) (1, 16) (2, 4) (2, 18) (5, 14)

IV. EXPERIMENT

We compare performance in classifying EEG signals dur-
ing motor imagery using the proposed method to that using
existing methods (CSP, CSSP, and SPEC-CSP).

A. Data Description

We used dataset IVa from BCI competition III [7]
(for details of the dataset, see http://www.bbci.de/
competition/iii/). This dataset consists of EEG sig-
nals during right hand and right foot motor-imageries. The
EEG signals were recorded from five subjects labeled aa, al,
av, aw, and ay. The measured signal was bandpass filtered
with the passband of 0.05–200 Hz, and then digitized at
1000 Hz. Moreover, we applied to this data the lowpass filter
whose the cutoff frequency is 50 Hz, and downsampled to
100 Hz. The dataset for each subject consisted of signals of
140 trials. A signal of one trial was measured for 3.5 seconds.

B. Result

Table I shows the classification accuracies given by each
method. In CSP, the feature vector defined in (4) with the
bandpass filtering with the passband of 7–30 Hz was used.
In CSSP, the delay sample was determined by 5×5 CV
in learning dataset. In SPEC-CSP, we assumed that the
filter coefficients not corresponding to 7–30 Hz are zero.
For reference, CSP-Ref shows the classification accuracy
rates when the passbands of the bandpass filters used in
preprocessing were 11–16 Hz (aa), 12–16 Hz (al), 21–26 Hz
(av), 11–18 Hz (aw), and 9–12 Hz (ay) in CSP procedure.
These passbands were chosen by 5×5 CV from fl–fu Hz for
fl = 1, . . . , 25 and fu = fl + 1, . . . , 30 and performed the
best accuracy among them. In the proposed method, we set
the filter order, P , to 20. The dimension of the feature vector
that performs the best classification accuracy was adopted.
The extracted feature vector was classified by linear SVM
with the soft margin parameter of 50 [8]. The linear SVM
was implemented with SVM-Light [9]. Table I shows that the
proposed method has the equal classification performance to
CSP-Ref. Moreover, the proposed method outperforms CSP-
Ref in classification accuracy of subjects aa and ay and many
filters are used in classification for these subjects.
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Fig. 1: Amplitude characteristics of the filters, θ1, . . . ,θ5

given by the proposed method in subject ay.

Figure 1 shows amplitude characteristics of filters given by
the proposed method. The filters θ1 and θ2 have a passband
of about 5–14 Hz including the band called mu rhythm.
Moreover, the band of about 15–25 Hz including the band
called beta rhythm are specified by the filters θ4 and θ5.

V. CONCLUSION

We have proposed a novel supervised feature extraction
method by extending existing CSP. The proposed method
extracts the feature by plural FIR filters and the associated
spatial weights. The objective of the proposed method is to
extract features associated with plural brain activities, which
are observed in different frequency bands and have different
spatial patterns. By the experiments, we have demonstrated
that the proposed method performs high classification accu-
racy for the MI-BCI and the method is competitive to existing
CSP algorithm. Interestingly, a passband of the resulting
filters corresponds to a band of mu or beta rhythm. This
suggests that the proposed method may be able to separately
extract different brain activities.
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