
 
 
 
 
 
 

  

Abstract– Use of scalp EEG for the diagnosis of various 
cerebral disorders is progressively increasing. Though the 
advanced neuroimaging techniques such as MRI and CT-
SCAN still stay as principal confirmative methods for detecting 
and localizing brain tumors, the development of automated 
systems for the detection of brain tumors using the scalp EEG 
has started attracting the researchers all over the world 
notably since 2000. This is because of two important facts: (i) 
cheapness and easiness of methods of recording and analyzing 
the scalp EEG and (ii) lower risk and possible early detection. 
This paper presents a method of detecting the brain tumor 
using the first, second and third order statistics of the scalp 
EEG with a Modified Wavelet-Independent Component 
Analysis (MwICA) technique and a multi-layer feed-forward 
neural network. 

I. INTRODUCTION 
IAGNOSIS and following (early) treatment are either 
missed or delayed in 69% of the brain tumor cases due 

to the fact that the most of the brain tumor symptoms are 
highly misleading according to the survey [12]. The 
advanced neuroimaging techniques such as MRI and CT or 
biopsy are not immediately suggested due to the following 
facts: they are either costly or invasive or do involve risks 
like hazardous radiation, especially in case of children, 
pregnant women and patients with implant devices [15]. The 
delay in diagnosis worsens the outcome [14]. Hence a better 
method that does not involve much cost, risks or complexity 
is required to detect the presence of a brain tumor (structural 
pathology) at an early stage [14]. 

II. EEG IN BRAIN TUMOR 
Generally it is accepted that brain tumors on superficially 

accessible portions of cerebral hemispheres involve some 
localized loss of electrical activity causing some localized 
slow waves on the scalp EEG [1]-[9] [16]. The general 
findings on the brain tumor symptoms on EEG are [2] [6] 
[9]: Polymorphic delta activity (PDA), Intermittent rhythmic 
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delta activity (IRDA), Diffuse or localized theta activity, 
Localized loss of activity over the area of the tumor, 
Asymmetric beta activity, Disturbance of the alpha rhythm 
and Spikes, sharp waves, or spike-wave discharges. 
Reactivity and persistence of these abnormalities often are 
the best indicators of the degree of damage: continuous slow 
activity (e.g., persistent PDA) indicates severe structural 
pathology such as large, deep hemispheric lesions whereas 
intermittent slow activity (e.g., frontal IRDA) generally 
indicates small lesions [16]. 

III. EARLIER WORKS ON BRAIN TUMOR DETECTION USING 
EEG 

Noteworthy earlier works on the detection of brain tumor 
using scalp EEG are [1] [2] [3] [4] and [5]. In [4] it has been 
shown how the one- and two- dimensional minimum orders 
of non-linear Markov models, which approximate the 
structure of the hidden dynamics in the EEG time-series of 
the pair of channels F3 and F4, vary with respect to the age 
and the structural pathologies (the tumors). In [2] it has been 
shown that a multilayer Self-Organizing Map (SOM) trained 
with the wavelet and frequency features can be used to 
classify the scalp EEG traces of normal, Glioma and 
Meningioma patients. In [3] it has been discussed how the 
graphs of the scalp EEG patterns of healthy subjects from 
those of subjects with brain tumors can be classified using 
Multi Layer Feed Forward (MLFF) network. In [1] it has 
been studied to separate EEG signals from tumor patients 
into spatially independent source signals using a 
probabilistic ICA algorithm modified by kernel-based 
source density estimation. In [5] the authors have presented 
their work in classifying the tumor EEG using Support 
Vector Machine (SVM) with FFT-based spectral features. 

In this paper, a successful proposal on the use of a 
combination of time-domain and frequency-domain features 
of the independent components of the scalp EEG obtained 
using a Modified Wavelet-ICA (MwICA) in training a Multi 
Layer Feed Forward (MLFF) Neural Network, popularly 
known as Back Propagation Network (BPN), to classify a 
brain tumor EEG segment from a normal one has been 
presented. Two first order statistical features, namely the 
Mean Square Amplitude (MSA) and the Mean Slope Rate 
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(MSR) that track the time-domain (morphological) 
variations in the EEG signal, one second order statistical 
feature, namely the Mean-to-Maximum Ratio of Power 
Spectrum (mmrPS) and one third order statistical feature, 
namely the Peak Bispectrum (pBS) that track the frequency-
domain (spectral) variations in the EEG signal have been 
chosen. The literatures, [18] & [19] present the efficiency in 
the use of these four statistical features in classifying various 
characteristic waves (alpha, delta, spindle and K-complex) 
of sleep EEG. 

IV. MATERIALS AND METHODS 

A. Materials 
Nineteen Common Average Referenced (CAR) EEG 

Channels in the standard 10-20 electrode system, were 
obtained in digital format from 3 healthy subjects and 6 
subjects with brain tumor (any type of brain structural 
pathology was considered) in the age group of 8 to 60 years 
for 20-25 minutes in the awake state with their eyes closed 
at a sampling rate of 256 Hz. All EEG records were 
bandpass-filtered to 1-70 Hz, 50-Hz-notch-filtered and 
EMG-filtered using the software accompanied with the EEG 
recorder. However some artifacts such as eye blinks, eye 
movements, forehead and head movements, transient noises 
and muscle noise resulting from facial muscle movements 
were still present. Eliminating the epochs containing these 
artifacts by visual inspection, only the artifacts-free 1000 
seconds (256000 data points) of all the EEG records were 
retained for the analysis. 

B. Methods 
Fig. 1 shows the block diagram representation of the 

entire proposed method. The proposed method comprises 
the following steps: the preprocessing of the EEG signal, a 
new Independent Component Analysis (ICA) approach, 
namely the Modified Wavelet-ICA (MwICA) for the 
separation of EEG components, the extraction of features 
that track the morphological and spectral variations of the 
signal and the process of detection by a Multi Layer Feed 
Forward (MLFF) neural network popularly known as the 
Back Propagation Network (BPN). 

C. Preprocessing 
All the 19-channel, 1000-second (normal and brain 

tumor) EEG records were split into 2-second (512 data 
points) EEG epochs for further analysis in order to account 
for the quasi-stationarity of the EEG signal. The issue of 
stationarity is not a problem for the wavelet transform [25] 
and the ICA [26]. However this is required for the features 
to be extracted. The quasi-stationarity of the EEG signals 
varies from 1 second to several minutes [25] [29]. However 
a quasi-stationarity period of 1-2 seconds is typical for most 
of the EEG signal analysis [28]. All these 19-channel, 2-
second EEG epochs were then lowpass-filtered to 40 Hz 

using a 128-tap FIR filter as the EEG components of interest 
were only below this frequency. 

D. Modified Wavelet Transform based ICA (MWT-ICA) 
The wavelet transform of a time-series is its multiband, 

multiresolution decomposition using orthogonal (lowpass 
and highpass) filters. The concept of wavelet transform and 
its practical implementation version known as the discrete 
wavelet transform (DWT) are very well discussed in [40] 
[41] [42] and [43]. The Independent Component Analysis 
(ICA) is a blind source separation technique that separates 
statistically independent (rather uncorrelated) sources or 
components from their linear mixtures [30]. The concept and 
algorithms of the ICA techniques are discussed in [30] and 
[44]. The application of the ICA to biomedical signals, 
especially EEG is discussed in [21], [22], [23], [24], [45] 
and [46]. 

The noteworthy earlier works on the efficient 
combination of the wavelet transform and ICA are [35]-[38]. 
The Modified Wavelet-ICA (MwICA) is a modified version 
of the Wavelet-ICA (wICA) techniques discussed in [36] & 
[38]. However this proposal was a direct consequence of the 
article in the literature [27]. According to [26], the number 
of data points required to separate n sources is preferably 
some multiples (at least equal to) n2. But the wavelet 
decomposition not only decorrelates the data but also 
reduces the data size thereby increasing the speed of 
convergence by ICA in the blind source separation process. 

Fig. 2 (a) to (d) depict the entire process of MwICA. First 
each of the 4500 19-channel, 2-second EEG epochs was 
decomposed to a depth of level 3 using the Symlets wavelet, 
‘sym5’ on a channel-by-channel basis. The choice of 
decomposition level and the wavelet type was made based 
on trial and error. The wavelets, Daubechies (db1 to db9), 
Coiflets (coif1 to coif5) and Symlets (sym2 to sym8) were 
tried for 1 to 10 decomposition levels. After the wavelet 
decomposition, the ICA of the 3rd level approximate 
coefficients was performed using the SOBI-RO algorithm. 
The resulting demixing (separating) matrix was used to 
demix the detail coefficients of third, second and first levels. 
The demixed wavelet coefficients were then reconstructed 
on a channel-by-channel basis to obtain the final set of 
independent components (ICs). However the result showed 
that the ICs obtained from the 3rd level approximate 
coefficients alone were very much sufficient. This was 
evident from the MwICA of the simulated data. 

E. Feature extraction 
The following features were then extracted from all the 

4500 19-component 2-second independent components sets 
on a component-by-component basis. 

1) First Order Statistics: The Mean Square Amplitude 
(MSAci) of an ith component, xci(n) of a 19-component, 2-
second (512 data points) IC set was calculated as the mean 
of the squares of the samples of the component [18] [19] i.e., 
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MSAci={Σn[xci
2(n)]/length(xci(n))}. The Mean Slope Rate 

(MSRci) for an ith component, xci(n) of a 19-component, 2-
second (512 data points) IC set was calculated as described 

in [18] and [19] i.e., MSRci=mean{Σk[xci(k)-xci(k+1)]/[tk-
tk+1]}. 

 
2) Higher Order Statistics: The Power Spectral Density 

(PSD) or simply the Power Spectra (PS) of a stationary 
time-series is defined by the Wiener-Khintchine theorem as 
the Fourier transform of the autocorrelation sequence of the 
time-series [32] and in this work, the Welch method was 
used to estimate the PSD of the given short-time series. The 
Maximum-to-Mean Ratio of Power Spectrum (mmrPSci) of 
an ith component, xci(n) of a 19-component, 2-second (512 

data points) IC set was computed as the ratio of the 
maximum value of the power spectrum, Pci(f) computed to 
its mean value [18] [19] i.e., mmrPSci=max{Pci(f)}/mean{ 
Pci(f)}. Here two values of mmrPS, one being measured 
below the frequency 6.5 Hz, named as  mmrPSslwci (Max-to-
Mean Ratio of Slow Power Spectrum), and another above it, 
named as  mmrPSfstci (Max-to-Mean Ratio of Fast Power 
Spectrum),  were considered. 
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Fig. 2 (a) A 2-level wavelet decomposition of a 19-channel, 2-second (normal or brain
tumor) EEG epoch using the Symlets wavelet, ‘sym5’ on a channel-by-channel basis is
shown. 
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Fig. 2 (b) The ICA of the 3rd level approximate coefficients from all 
channels using the SOBI-RO algorithm is shown. The resulting 
demixing matrix, W was used to demix the detail coefficients from 
all channels. 

Fig. 2 (d) Reconstruction of the demixed wavelet coefficients of all channels using the Symlets wavelet 
‘sym5’ on a channel-by-channel basis is shown. The output of this step was the final set of independent 
components. 
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Fig. 1 The block diagram representation of
the proposed method is shown. 
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2 (b) is shown.
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The bispectrum of a stationary time series, x(n) is defined 
as the Fourier transform of its third order cumulant [33] i.e., 
B(f1,f2)=FFT[Rxx(m1,m2)] where Rxx(.) is the third-order 
cumulant of x(n) defined as the expected value of the triple 
product i.e., Rxx(m1,m2)=E{x(n)x(n+m1)x(n+m2)}. 

The bispectrum can be shown [33] to be 
B(f1,f2)=X(f1)X(f2)X*(f1+f2) where X(f) is the discrete Fourier 
transform of the sequence, x(n). 

The minimum variance estimation of bispectrum requires 
a large number of data points. However it has been shown in 
[39] that 512 data points (2 seconds) sampled at a rate of 
256 Hz are sufficient to make a reasonable estimate of 
bispectrum. The Peak Bispectrum (pBS) of an ith 
component, xci(n) of a 19-component, 2-second (512 data 
points) IC set was computed as the maximum value of the 

bispectrum, Bci(f1,f2) of xci(n) computed using the Fast 
Fourier Transform (FFT) as explained in [31]. Here again 
two values of pBS, one being measured below 6.5 Hz, 
named as pBSslw (Slow Peak Bispectrum), and another 
above it, named as pBSfst (Fast Peak Bispectrum), were 
considered. 

At the end of this step there were 4500 feature vectors, 
each of length 114 (6 features per component for each 19-
component, 2-second (512 data points) IC set), of which 
1500 belonged to normal EEG and 3000 to brain tumor 
EEG. Of these 4500 feature vectors, 3000 (1000 from 
normal set and 2000 from brain tumor set) feature vectors 
were chosen as the training set for the network to be 
discussed in section F and the remaining for testing the 
trained network. 

 

F. Detection by Multi Layer Feed Forward (MLFF) neural 
network 

The choice of multi layer network, which is a non-linear 
classifier [17], is based mainly on the fact that the scatter 
plots of features within and between the classes (normal and 
brain tumor cases) exhibit non-linearity. The other reasons 
are the generalization of network, the ease of 
implementation, the lesser computation overhead and the 
availability of large options of network architectures with 
simple addition or deletion of layers and/or neurons, 

efficient learning and training algorithms etc. The factor for 
the success of the training process and the generalization of 
the network are discussed in [17] and [47] respectively. The 
formulation of this aspect has been presented in [19]. 

A 3-layer MLFF network such as the one shown in Fig. 3 
was chosen for the proposed work. The number of input 
layer neurons was made equal to the dimension of the input 
vector, i.e., 114. As there were two possible outcomes 
whether the feature vector that was input to the network 
belonged to normal EEG or brain tumor EEG, the logical 

TABLE I 
FOUR POSSIBILITIES OF NETWORK OUTCOMES IN DETECTION PROCESS 

  Actual case 
  P N 

Network 
decision 

P/ True Positive False Positive 
N/ False Negative True Negative 

TABLE II 
VALUES OF FOUR POSSIBILITIES OF NETWORK OUTCOMES LISTED IN TABLE I 

  Actual case  

  P N Total 

Network 
decision 

P/ 930 53 983 

N/ 70 447 517 

Total 1000 500 1500 

P-Actual brain tumor cases; N-Actual normal cases; P/-Brain tumor cases as 
per network; N/-Normal cases as per network 

TABLE III 
VALUES OF PARAMETERS GIVEN BY EQUATIONS (9) TO (12) 

Sensitivity or TPR 0.930 
FPR 0.106 
Accuracy 0.918 
Specificity or TNR 0.894 

Fig. 3 A 3-layer Multi Layer Feed Forward (MLFF) neural network is 
shown. 

Fig. 4 Receiver Operating Characteristics: The proposed method has the 
point encouragingly at (0.106, 0.930). 
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outputs that correspond to these two outcomes were chosen 
to be the target vectors. The number of the output layer 
neurons was chosen to be the size of the target vector. For 
this proposed work the number of hidden layer neurons was 
randomly chosen to be one-thirtieth of the number of 
training vectors available i.e., 100. 

V. RESULT AND DISCUSSION 
The result of the testing phase has been shown in Table II. 

The testing phase included the remaining 1500 cases, of 
which 500 belonged to normal case and 1000 to brain tumor 
case. The status that the chosen EEG epoch belonged to a 
brain tumor case was considered as ‘positive’ and that it 
belonged to a normal case as ‘negative’. Then the four 
possibilities of the network outcomes were [48]: True 
Positive (TP) if the network decided that a chosen EEG 
belonged to a brain tumor case when it actually did, True 
Negative (TN) if the network decided that a chosen EEG 
belonged to a normal case when it actually did, False 
Positive (FP) if the network decided that a chosen EEG 
belonged to a brain tumor case when it actually belonged to 
a normal case and False Negative (FN) if the network 
decided that a chosen EEG belonged to a normal case when 
it actually belonged to a brain tumor case. This is depicted in 
Table I. From Table II the following parameters were 
calculated to estimate the performance of the proposed 
method [48] [49]: Sensitivity or True Positive Rate (TPR) as 
[TP/(TP+FN)], Accuracy (ACC) as [(TP+TN/(P+N)] and 
Specificity or True Negative Rate (TNR), which is one minus 
False Positive Rate (FPR), as [TN/(FP+TN)] where P 
stands for the total number of positive (brain tumor) cases 
considered and N for that of negative (normal) cases 
considered. The values of these parameters have been listed 
in Table III. The ROC (Receiver Operating Characteristics) 
was obtained from the values listed in Table III. Fig. 4 
shows the ROC. From the ROC it is clear that the 
performance of the proposed method in detecting the brain 
tumor using the scalp EEG is very much encouraging. 

VI. FUTURE DEVELOPMENT 
To improve the detection (or classification) rate, not only 

the features, such as the ones (except, possibly, the 
bispectrum [34]) discussed in this paper, which track the 
linear dynamics of the EEG signal but also the features 
which track the nonlinear dynamics of the EEG signal can 
be considered since the EEG exhibit both the linear and 
nonlinear properties [50]. 
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