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Abstract— This study is aimed at characterizing three signal
entropy measures, Approximate Entropy (ApEn), Sample En-
tropy (SampEn) and Multiscale Entropy (MSE) over real EEG
signals when a number of samples are randomly lost due to,
for example, wireless data transmission. The experimental EEG
database comprises two main signal groups: control EEGs and
epileptic EEGs.

Results show that both SampEn and ApEn enable a clear
distinction between control and epileptic signals, but SampEn
shows a more robust performance over a wide range of sample
loss ratios. MSE exhibits a poor behavior for ratios over a 40%
of sample loss. The EEG non–stationary and random trends are
kept even when a great number of samples are discarded. This
behavior is similar for all the records within the same group.

I. INTRODUCTION

Biomedical signals such as electroencephalograms (EEG),

electrocardiograms (ECG) or heart rate variability (HRV)

series, exhibit high non–stationary and non–linear trends.

Classical linear signal processing methods are not suitable

for their analysis. Noise, artifacts or any other signal outliers

may cause these methods to yield misleading results. Linear

methods sometimes suffer a lack of robustness when applied

to biomedical signals [1], [2]. Another type of methods

is necessary when trying to measure the dynamics of the

signals. One group of these methods are the non–linear

methods, very suitable to assess signal regularity.

Entropy measures are a family of statistics that provide

information about the chaotic or deterministic nature of a

signal, by quantifying the time–series regularity. In broad

terms, they measure the likelihood that runs of patterns that

are close, remain close in the next incremental compari-

son [3]. Among the wide variety of regularity measures,

Approximate Entropy (ApEn), Sample Entropy (SampEn)

and MultiScale Entropy (MSE) have been successfully used

in many biomedical applications [4]–[8]. They have been

chosen for the characterization study described in this paper.
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On the other hand, many biosignals are nowadays remotely

acquired and wirelessly transmitted to a central communica-

tions node. The number of applications that need biosignal

transmission is growing up in a very rapid way. For instance,

telehealth applications, such as elderly people home moni-

toring, involves a 24/7 control. Most of data transmission

in such applications is carried out in a wireless way (WiFi,

Bluetooth, UMTS, GSM, zigbee, or any radio link). This type

of transmission can suffer connection loss or interruptions

[9] or packet loss [10], due to noise or interferences [11].

In addition, related techniques such as event detection [12],

hardware design, energy saving, and data compression [13],

[14], among others, may also entail a data loss.

Therefore, it is necessary to study data loss influence on

the entropy measures. This loss has not been characterized

before, and as wireless data transmission and non-linear

methods become more widely used, the application of signal

regularity methods to biosignals with missing samples can

lead to incorrect conclusions. This paper aims to give an

exhaustive characterization of ApEn, SampEn and MSE

when EEG signals lose samples randomly.

II. METHODS AND MATERIALS

A. Regularity measures

1) Approximate Entropy (ApEn): ApEn is a regularity

measure that quantifies the logarithmic likelihood of a time-

series. It can be computed for any time-series and can

discriminate a wide variety of signal types [2], [3]. It is

considered to be insensitive to infrequent artifacts. It is also

robust to noise, as long as the the noise present in the time–

series is below a de facto threshold established by parameter

r. On the other hand, it exhibits a statistical bias due to time–

series length (N) and, if a signal-to-noise ratio is below 3 dB,

its validity is compromised. A more detailed description of

ApEn can be found in [2], [3].

The mathematical definition of ApEn is as follows: Let’s

consider a time data series u(n) with n= 0,1, ...,N−1. Runs

of m consecutive values of u(n), commencing in the i th point

can be arranged. We can define these runs as [2]:

x(i) = [u(i)u(i+1)...u(i+m−1)] (1)

m is an input parameter for the length of the run [2]. In order

to find out if the runs are considered similar, a dissimilarity

measure is defined as [3]:
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d(i, j) = d(x(i),x( j))

= max
k

{|x(i+k−1)−x( j+k−1)|} k = 1,2...m (2)

ApEn is then calculated as a logarithmic likelihood ratio:

ApEn(m,r,N) = Φm(r)−Φm+1(r) (3)

Φm(r) is estimated as follows:

Φm(r) =
1

N −m+1

N−m+1

∑
l=1

ln{Cm
i (r)} (4)

and Cm
i (r) represents the number of coincidences, which is

obtained as:

Cm
i (r) =

1

N−m+1

N−m+1

∑
j=1

y( j) (5)

y( j) =

{

1 d(i, j)≤ r
0 d(i, j)> r

(6)

r sets the filter level. N is the time-series length and m is the

run length. According to (3), larger ApEn values correspond

to more irregular signals. Length N should be between 100

and 3000 samples, and r higher than the mean amplitude of

the noise present in the signal [3], [15].

2) Sample Entropy (SampEn): SampEn measures the

conditional probability that two epochs from a time series

remain close at the next sampled step [16]. SampEn exhibits

relatively consistency under circumstances where ApEn does

not, since it does not count for self–matches and it is largely

independent of the record length (N). SampEn presents a

reduced bias for short records [1]. The algorithm to compute

SampEn is simpler than that of ApEn. Given a time–

series u(n) with n = 0,1, ...,N − 1, input vectors should be

constructed as shown in (1). SampEn is defined as the natural

logarithm of the likelihood ratio [1], [16] according to:

SampEn(m,r,N) = ln(Φm(r))− ln(Φm+1(r)) (7)

Although the same notation is used in (3), (4) and (5)

they should not count for self-matches. Therefore their new

expressions are:

Φm(r) =
1

N−m

N−m

∑
i=1

Cm
i (r) (8)

Cm
i (r) =

1

N −m−1

N−m

∑
j=1

j �=i

y( j) (9)

where y( j) is computed as given in (6).

3) MultiScale Entropy (MSE): MSE computes SampEn

over a modified version of the original time–serie. MSE

enables the resolution of regularity on larger scales. To

estimate MSE, a coarser grained time-series, w(M)(n), is

obtained from the original one u(i), according to [17]:

w(M)(n) =
1

M

jM

∑
n=( j−1)M

u(n) 1 ≤ j ≤
N

M
(10)

then SampEn is estimated as in (7) over the coarse grained

series defined in (10).

B. EEG Database

This database [8] consists of 5 groups: Data A, B, C,

D, and E. Each group contains 100 signals of 20s duration,

sampled at a rate of 173.61 Hz. The first two groups (Data A

and Data B) are control patients , while the other three groups

(Data C, D and E) contain signal segments corresponding

to patients suffering from epilepsy. Data C and D contain

signal segments between interictal epochs, recorded on both

hippocampal formations (left and right). Data E contains only

ictal events.
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Fig. 1. EEG and PSD for one signal of each group. (a) Data A, control
subjects with open eyes. (b) Data B, control subjects with closed eyes. (c)
Data C, epileptic subjects, interictal events. (d) Data D, epileptic subjects,
interictal events. (e) Data E, epileptic subjects, ictal events.

Signals were cut from a continuous multichannel EEG

recording after visual inspection for artifacts (muscle activity,

eye movement, etc.) and band–pass filtered [0.53, 40] Hz [8].
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Fig. 1 shows an EEG signal segment and its corresponding

power spectral density (PSD) for one signal of each group.

C. Simulations

Simulations were done using the MatLa(c) environment.

The sample loss was implemented by removing a number

of samples equal to a percentage previously established.

The samples to be removed were selected by a random

distribution. Sample loss percentage began at 0%, increasing

in steps of 5%, up to 90%. One hundred random realizations

were considered for each percentage, taking the mean values

for the regularity measures. The parameters were configured

as follows: m was set to 2 and r was set to 0.15σu, where

σu was the original time–series standard deviation.

D. Evaluation

Two types of analysis were done. The first one studied

how the regularity measure(RM) evolved with sample loss

for each group of signals in terms of median ( µ̃) and Median

Absolute Deviation (MAD). The second analysis calculated

the correlation coefficient (CC) of the regularity measures

after the sample removal with respect to the original signal

regularity value, so as to establish the robustness of the

measure. The correlation coefficient is computed as follows:

CC =

∣

∣

∣

∣

∣

∣

∑
Ns−1
i=1 (RM−µRM) (RMr −µRMr

)
√

∑
Ns−1
i=0 (RM−µRM)2

√

∑
Ns−1
i=0 (RMr −µRMr

)2

∣

∣

∣

∣

∣

∣

(11)

RM and RMr are the vectors containing the regularity

measures from the original and modified time–series of each

data set. µRM and µRMr are their respective mean RM values

for data set. Ns is the number of signals on each dataset.

The work described in [11] states that if CC is higher than

0.8–0.9, results are still valid to be used in clinical diagnosis.

III. RESULTS

Scale 1 MSE corresponds to SampEn, so this case was not

considered for MSE. Scales ranged initially from 2 to 10, but

results for scales higher than 3 were not robust enough in

terms of class differentiation when the sample removal ratio

was higher than 15%. Thus, results are only shown for ApEn,

SampEn, and scales 2 and 3 of MSE.

Fig. 2 shows the median RM and their MAD for the 100

signals present in each data group. For each signal, a mean

RM is taken from 100 random realizations. Fig. 2.(a) and Fig.

2.(b), show that ApEn and SampEn allow a better separation

between control data (groups A and B) and epileptic data

(groups C,D and E), even for an 80% of sample loss. MSE

(see Fig. 2.(c) and Fig. 2.(d)) only allows a segmentation

between main groups when sample loss ratio is below 40%.

It can also be seen that even though regularity values change,

the separation between control and epileptic subjects remains

present for a high range of sample loss ratio (only for ApEn

and SampEn).

Fig. 3 shows the CC versus the sample loss ratio. This

figure enables to assess the robustness of the RM against

data loss. SampEn appears to be the most robust one, as its
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(c) (d)

Fig. 2. RM (µ̃ ±MAD) for each data set vs. sample removal ratio (%).
(a) ApEn, (b) SampEn, (c) MSE scale 2, (d) MSE scale 3.

CC does not decay below 0.8 even though the 80% of the

samples are lost. ApEn (see Fig. 3) seems to be slightly less

stable, particularly for control data. Finally, MSE shows little

robustness when sample loss ratio increases over 50%.

IV. DISCUSSION

From the description of the database [8], it was expected

to have at least 2 main groups, control subjects (data A

and B) and epileptic subjects (data C,D and E). It would be

optimal to discriminate also among data groups C, D and E,

as the first two contain interictal events while E contains only

ictal events. However, given the small regularity dissimilarity

among those groups, more realistic results to expect were a

small variation of the regularity measures when increasing

sample loss rate, and at least a clear separation between

control and epilectic data groups.

These results can be observed in Fig. 2. ApEn and SampEn

set a clear boundary between control patients (A and B) and

epileptic patients (C,D and E), for almost the whole range

of the sample loss ratio evaluated. Thus, it can be stated that

these measures are able to make a clear distinction between

these two groups even when the 80% of the samples are

lost, regardless of the regularity value changes along with

the sample loss ratio.

On the contrary, MSE does not exhibit such desirable prop-

erties. When the scale increases, the sample loss percentage
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Fig. 3. CC versus sample loss ratio (%) for each data set and RM
considered. (a) ApEn, (b) SampEn, (c) MSE scale 2, (d) MSE scale 3.

where the separation becomes blurred is lower, 60% for scale

2 and 40% for scale 3. If this measure is used to characterize

only control patients (groups A and B), a separation between

open eyes and closed eyes EEG’s can be observed.

A robustness study in terms of the cross correlation

coefficients (CC) was also performed. The corresponding

results are graphically shown in Fig. 3. As long as the CC is

over 0.8–0.9 [11], data suffice for a clinical diagnosis [11].

SampEn is preferred in terms of robustness as for all data

groups as CC is over 0.8 for sample loss ratios up to 80%.

MSE loses the robustness of the measure, earlier for larger

scales, making it not reliable when the sample loss is above

40%.

V. CONCLUSION

A. Conclusions

In this paper, a characterization of 3 different signal

regularity measures over EEG signals when the time-series

data suffer of sample loss was presented. SampEn proved to

be more robust in terms of CC value variation and in terms

of group discrimination up to sample loss ratios of 80%.

MSE demonstrated to be useful when looking for differences

within a main group. EEGs showed a non-stationary trend

which remained almost unaltered when some samples were

not considered.

B. Future Work

A deeper characterization of these and additional regular-

ity measures is being carried out. Some more studies like

how interpolation or decimation affects the regularity mea-

sure, how these measures vary with the sample frequency,

are under development. Parameterization also needs to be

investigated, so as to establish how m and r affect the

discriminating power of the regularity measures.
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