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Abstract— Heart rate variability (HRV) may provide anes-
thesiologists with a noninvasive tool for monitoring nociception
during general anesthesia. A novel wavelet transform cardiores-
piratory coherence (WTCRC) algorithm has been developed to
calculate estimates of the linear coupling between heart rate
and respiration. WTCRC values range from 1 (high coherence,
no nociception) to 0 (low coherence, strong nociception). We
have assessed the algorithm’s ability to detect movement events
(indicative of patient response to nociception) in 39 pediatric
patients receiving general anesthesia. Sixty movement events
were recorded during the 39 surgical procedures. Minimum
and average WTCRC were calculated in a 30 second window
surrounding each movement event. We used a 95% significance
level as the threshold for detecting nociception during patient
movement. The 95% significance level was calculated relative
to a red noise background, using Monte Carlo simulations.
It was calculated to be 0.7. Values below this threshold were
treated as successful detection. The algorithm was found to
detect movement with sensitivity ranging from 95% (minimum
WTCRC) to 65% (average WTCRC). The WTCRC algorithm
thus shows promise for noninvasively monitoring nociception
during general anesthesia, using only heart rate and respira-
tion.

I. INTRODUCTION

Anesthesiology is commonly regarded as the practice of
autonomic medicine. Noxious stimuli during surgery cause
the autonomic nervous system (ANS) to invoke a stress re-
sponse, increasing sympathetic tone and decreasing parasym-
pathetic tone [1]. An excessive and prolonged sympathetic
response increases the risk of suffering from peri-operative
complications and delayed recovery. Indeed, the surgical
stress response is a key factor in postoperative morbidity
[2]. Anesthesiologists must therefore control the ANS by
administering analgesic drugs.

There is currently no clinically proven and routinely
used monitor of the ANS. Anesthesiologists are guided by
observation and interpretation of trends in patients’ vital
signs, which are only indirect measures of nociception.
Confounding factors such as pre-existing medical conditions
and inter-patient variability cause difficulties in such indirect
estimations. An automated nociception monitor that directly
assesses ANS activity would be very useful for general
anesthesia, providing anesthesiologists with feedback about
the adequacy of analgesia. Heart rate variability (HRV)
shows promise as a noninvasive nociception monitor [3], [4].
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We have previously developed a wavelet transform car-
diorespiratory coherence (WTCRC) algorithm to measure
autonomic balance [5]. WTCRC estimates the strength of
linear coupling between the heart rate (HR) and respiration
in the joint time/frequency domain. The algorithm provides
a measure of respiratory sinus arrhythmia (RSA), which has
been shown to reflect the balance between the sympathetic
and parasympathetic tones [6]. WTCRC tracks respiration
(and thus RSA) as it moves in the time/frequency plane,
by using the known respiratory frequency calculated from a
respiratory wave. In so doing, the algorithm entirely elimi-
nates the traditional concept of frequency bands, allowing
it to function in a wider range of conditions than other
time/frequency methods. We have previously shown that
WTCRC correlates with the LF/HF power ratio, and that
it can function in a wider range of conditions, such as when
the respiratory frequency is less than 0.15 Hz [5].

We wish to assess the performance of WTCRC in measur-
ing nociception, but there is no gold standard for comparison.
Anesthetized patients clearly cannot report their level of
pain, and no other algorithm has been proven as an accurate
measure of nociception. Changing levels of surgical stimuli
and anesthetic drugs lead to variable levels of nociception
during surgery, and the precise level at any given point in
time is unknown. Nevertheless, it may be possible to assess
WTCRC’s sensitivity to nociception.

Patient movement is a symptom of inadequate analgesia
[7], and is a strong sign that the patient is responding to
nociceptive stimuli. The WTCRC algorithm should reflect
a loss of coherence during movement events, if it is truly
sensitive to nociception.

This paper describes the WTCRC algorithm and investi-
gates its sensitivity to movement events in patients receiving
general anesthesia during surgery.

II. METHOD

A. Wavelet Transform Cardiorespiratory Coherence

The WTCRC algorithm first calculates the continuous
wavelet transform for the heart rate time series (tachogram)
and a respiration wave. At any given scale, the wavelet
transform is given by:

Wn(s) =

N−1∑
n′=0

xn′Ψ∗
[

(n′ − n)δt

s

]
, (1)

where xn is the input time series, n is the time index,
s is the scale, δt is the sampling time, and the asterisk
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(∗) is the complex conjugate operator. We use a complex
Morlet mother wavelet, as its scales are directly related to
Fourier frequencies. The result is a 2D matrix of wavelet
coefficients at different times and scales. We denote the
wavelet coefficients for the tachogram and respiration as WT

n

and WR
n , respectively.

From the wavelet coefficients, the algorithm calculates the
wavelet power spectrum for each signal, as well as the cross
power spectrum:

WTT
n (s) = WT

n (s)WT∗
n (s),

WRR
n (s) = WR

n (s)WR∗
n (s),

WTR
n (s) = WT

n (s)WR∗
n (s). (2)

Power densities are then smoothed in time with a Gaussian
window (e−t

2/2s2 ) and in scale with a rectangular window
(length 0.6 x scale).

The algorithm then calculates the coherence estimator, as
the squared absolute value of the smoothed cross-wavelet
spectrum normalized by the smoothed absolute values of the
individual wavelet spectra:

Ĉ2
n(s) =

∣∣〈WTR
n (s) · s−1

〉∣∣2
〈|WTT

n (s)| · s−1〉 〈|WRR
n (s)| · s−1〉

, (3)

where the angled brackets (〈〉) denote the smoothing oper-
ator. The coherence estimator is a 2D matrix of coherence
values at each time and frequency.

Finally, the algorithm extracts the coherence values at the
known respiratory frequency (RSA) at each point in time,
using respiratory rate (RR) values calculated from the respi-
ration wave a priori. WTCRC outputs a 1D vector of time-
varying coherence values from the respiratory frequency.
Coherence can range from 0 (no coherence) to 1 (perfect
coherence).

B. Movement Detection Threshold

We use the 95% significance level as the threshold for
detecting nociception during patient movement. The signif-
icance level reflects the results of a hypothesis test. The
statistical significance of the wavelet spectral power is esti-
mated relative to the null hypothesis that it is generated by a
random background noise process. The result is the minimum
coherence value required for rejecting the null hypothesis
with 95% confidence. If the wavelet power is significantly
stronger than the background noise, then it is assumed to be
true coherence (no nociception). Otherwise, we cannot reject
the null hypothesis that it is not true coherence (nociception).
Thus, the 95% significance level serves as our threshold for
detecting patient movement.

We model the background as red noise using a lag-
1 autoregressive process. Red noise power increases with
decreasing frequency, and is a reasonable model for the HRV
(e.g. DC and VLF power is much higher than LF and HF
power). The red noise Fourier spectrum is given by [8]:

Pk =
1− α2

|1− αe−2iπk|2
, (4)

where α is the lag-1 autocorrelation and k defines the
frequency index. This process is chi-square distributed with
two degrees of freedom (χ2

2) because we are using the
complex Morlet wavelet. The probability that the wavelet
power is greater than the background noise is given by:

D

(∣∣WX
n (s)

∣∣2
σ2
X

< p

)
=
Pkχ

2
2(p)

2
(5)

The hypothesis test is performed with a Monte Carlo simu-
lation of 10,000 randomly generated red noise time series.

C. Clinical Protocol & Data Collection

Following ethics approval and informed consent, data were
collected from 39 healthy pediatric patients receiving general
anesthesia during dental surgery. Subjects were aged 3-6
years, had ASA physical status I or II, were free of car-
diorespiratory disease, and were not taking medications that
alter ANS function. Subjects were anesthetized with propofol
and remifentanil. Surgeries provided multiple periods of
nociceptive stimuli, including dental dam insertions, tooth
extractions, cavity drillings, and cap insertions.

Physiological data were recorded throughout each case.
The electrocardiogram (ECG) and capnometry (CO2) waves,
as well as the RR trend, were recorded using Datex/Ohmeda
S/5 Collect software (GE Healthcare, Helsinki, Finland). The
ECG was recorded at 300 Hz, CO2 at 25 Hz, and RR (from
capnometry) at 0.1 Hz. A research assistant annotated the
data in real-time with markers identifying patient movement
events.

D. Data Analysis

Data were first manually inspected and selected for anal-
ysis. Case annotations were searched to find all recorded
patient movement events. Movement events were only re-
tained for analysis if they occurred during the stable phase
of anesthesia, when the patient was mechanically ventilated,
and when the respiration and ECG waves were free of
significant artifacts. The following were considered to be
movement events:
• moving limbs or torso,
• tensing muscles,
• biting/clenching teeth,
• coughing,
• surgeon reporting a patient response to stimulation.

In total, 60 movement events were retained for analysis.
Heart rate and respiration signals were prepared for anal-

ysis. Data segments were first extracted around each patient
movement event. Each segment was at least 2 minutes long to
ensure the analysis was not corrupted by edge artifacts. ECG
R peaks were detected using a filter bank algorithm [9]. Each
R-R interval series was converted into a tachogram, and then
resampled onto an evenly-spaced 4 Hz grid using Berger’s
algorithm [10]. The flow wave was downsampled to 4 Hz
using standard low pass filtering and decimation. The RR
trend (derived from the flow wave) was upsampled to 4 Hz
using a repeater. Minor tachogram artifacts were manually
detected and corrected.
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Fig. 1. Example WTCRC analysis. Top plot: tachogram. Middle plot: coherence map. Bright areas indicate high coherence. Horizontal green line indicates
the respiratory frequency. Bottom plot: coherence at the respiratory frequency. Horizontal red line indicates the 95% significance level. Vertical blue lines
denote clinical events. A patient movement event (biting on retractor) was recorded at time t = 240 s. Coherence is below the 95% significance level
threshold near the movement event, but recovers to a statistically significant value after the patient receives additional anesthetic drugs (propofol and
remifentanil boluses).

Fig. 2. Nociception detection results for each movement event. Coherence below the 95% significance level (red line) is a successful detection.
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WTCRC was calculated over each data segment, and a
30 second window surrounding each movement event was
extracted (15 seconds on each side of the event). The effects
of movement should be manifested within the window. Two
different metrics were calculated for each window: average
and minimum WTCRC.

III. RESULTS

The outcome of the Monte Carlo simulation suggests that
the 95% significance level is approximately 0.7. We thus
used this value as the movement detection threshold.

Fig. 1 illustrates an example WTCRC analysis of a single
patient movement event. Fig. 2 presents the analysis results
across all patient movement events.

The minimum and average coherence values were below
the threshold (i.e. movement detected) during 57/60 (95%)
and 39/60 (65%) patient movement events, respectively.

IV. DISCUSSION & CONCLUSION

We have developed a novel WTCRC algorithm for moni-
toring nociception during general anesthesia. The algorithm
estimates the strength of linear coupling between the heart
rate and respiration. It measures autonomic state based
solely on RSA, which has been shown to reflect the net
balance between sympathetic and parasympathetic tones [6].
WTCRC enhances previous work by analyzing the coherence
only at the known respiratory frequency. In so doing, it elim-
inates the concept of HRV frequency bands. The algorithm
performs well even when the respiratory frequency is outside
the HF band [5].

We have shown that WTCRC can detect patient movement
with high sensitivity in patients receiving general anesthesia.
We estimated a 95% significance level of 0.7 for WTCRC
using Monte Carlo simulations, to serve as a movement
detection threshold. Using this threshold, we achieved a
sensitivity of 95% for minimum coherence, and 65% for
average coherence.

These results suggest a possible avenue for future algo-
rithm tuning. Choice of metric (e.g. minimum or average
coherence) and window length (e.g. 30 seconds) could be
adjusted to tune the WTCRC results. By using shorter
windows or minimum coherence, we can make the algorithm
very sensitive to nociception. Conversely, we can decrease
the sensitivity by averaging over longer windows. Anesthesi-
ologists could adjust the tuning during surgery to reflect their
concern for the patient. Patients at greater risk may warrant
a higher sensitivity than others. Adjusting an algorithm’s
sensitivity typically results in a tradeoff with specificity.

Assessing WTCRC’s specificity is very difficult, however,
and is beyond the scope of this work. While patient move-
ment events are strong indicators of true positive responses
to nociception, there is no corresponding indicator of true
negative responses. Lack of movement does not mean lack
of response. A high level of nociception is required to
cause patient movement. Subcritical levels of nociception
still affect the patient, but do not cause movement. As such,

we cannot use periods without movement as true negatives
for nociception.

Future work will involve adapting the WTCRC algorithm
to run in real time, which is essential for real-world clinical
use. Real-time adaptation is nontrivial; in particular, we
must address the problems of edge artifacts and runtime
complexity. We will also investigate methods of applying
WTCRC during periods of spontaneous ventilation. Spon-
taneous ventilation can be highly nonstationary, and tends
to produce noisy coherence estimates. This is especially
problematic in anesthetized patients, who may be semi-
apneatic. Methods could conceivably be developed to deal
with these conditions.

WTCRC can be used to detect patient movement with high
sensitivity. The algorithm shows promise as a monitor of
nociception during general anesthesia. In the future, it could
provide anesthesiologists with feedback about the adequacy
of analgesia in real time, increasing patient safety during
surgery.
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