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Abstract—Optical coherence tomography (OCT) is an 

important mode of biomedical imaging for the diagnosis and 

management of ocular disease. Here we report on the 

construction of a synthetic retinal OCT image data set that may 

be used for quantitative analysis of image processing methods. 

Synthetic image data were generated from statistical 

characteristics of real images (n = 14). Features include: 

multiple stratified layers with representative thickness, 

boundary gradients, contour, and intensity distributions 

derived from real data. The synthetic data also include retinal 

vasculature with typical signal obscuration beneath vessels. 

This synthetic retinal image can provide a realistic simulated 

data set to help quantify the performance of image processing 

algorithms. 

I. INTRODUCTION 

PTICAL coherence tomography (OCT) imaging of the 

eye has rapidly become one of the most important 

imaging modalities for the diagnosis and management of 

retinal diseases. Current state of the art Spectral Domain 

OCT (SD-OCT) imaging systems provide clinicians with 

micron-level resolution [1-3]. This technology has moved 

rapidly from engineering to clinical implementation and 

tools to quantify and assist users with visualization and 

interpretation of the data generated are still developing [4-7]. 

Quantitative analysis of biomedical image data plays an 

increasingly important role in medical decision making. 

Feature detection may be an important component of tumor 

identification in breast cancer [8-13] and image 

segmentation may be critical information that helps 

clinicians to decide whether or not medical therapy is halting 

the progression of optic nerve degeneration in glaucoma [14, 

15]. Biomedical image information is also increasingly used 

as guidance for surgical treatments [16]. Each of these 

applications relies on various elements of image processing 

that may include feature detection, segmentation, 

registration, and denoising as well as other operations. 

Reliable quantitative analysis of image data is an important 

step in deriving actionable information from imaging data. 
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There are numerous studies that use synthetic or phantom 

images as a benchmark to enable quantitative comparisons 

of image processing operations. For example, the modified 

Shepp-Logan phantom is frequently used as a reference for 

CT and MRI image processing evaluations. Despite its 

simplicity (or perhaps because of it) this model has been a 

highly useful tool for quantitative analysis of image 

processing methods in MRI and CT data [17, 18]. Phantom 

images have also been used for validation of image 

registration [20] and segmentation algorithms [21, 22] for 

ultrasound data. However, these synthetic images were not 

derived from real data. In this research, we derive a synthetic 

model for retinal OCT data from real image data. The 

objective of this research was to develop a model of retinal 

SD-OCT data that could be used as a benchmark for similar 

quantitative research with OCT image data. The goal was to 

provide a standardized synthetic data set for comparison of 

various image processing methods.  

II. METHODS 

A. Data 

 Fourteen high-quality B-Scan images were selected from 

within three different C-Scan volumes, each from a different 

animal. All parameters of the model were derived using 

these fourteen images. To insure that all B-Scan images had 

comparable thickness parameters for each layer, the B-Scan 

images were selected from regions adjacent to the optic 

nerve head (Figure 1). 

B. Manual segmentation 

Each B-Scan image included in the model was manually 

segmented by domain experts using a custom designed 

image annotation tool. The segmentation procedure involved 

delineating the boundaries for seven different retinal layers 

and demarcating blood vessels in the image. The seven 

layers included in the segmentations were: Nerve Fiber 

Layer-Ganglion Cell Layer (NFL-GCL), Inner Plexiform 

Layer (IPL), Inner Nuclear Layer (INL), Outer Plexiform 

Layer (OPL), Outer Nuclear Layer (ONL), Photo Receptor 

Layer (PRL) and Retinal Pigmented Epithelium (RPE). Each 

of these layers is identified separately in Figure 2. Manual 

segmentation of these multiple images was the basis for the 

intensity, gradient and contour parameters of the synthetic 

image model. 

C. Intensity modeling 

Intensity distribution models were derived for seven retinal 

layers by analyzing the distributions for these layers across 
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the fourteen constituent B-Scan images. Statistical analysis 

was performed to evaluate the intensity distributions to 

determine whether or not they were normal, kurtotic, or 

showed any significant skew. The Shapiro-Francia test for 

normality was used to evaluate each distribution (Stata x86-

64 v11.2). Table 1 shows the results for the Shapiro-Francia 

test for normality applied to the distributions of each layer 

from the fourteen B-Scan images, with P <.05 indicating a 

statistically significant departure from normality. Statistical 

test results as well as graphical inspection were the basis for 

selection of the modeled probability distributions. Layers 

modeled with Normal distributions had their respective 

means and standard deviations derived from the mean of the 

14 total B-Scan images. The remaining layers that were 

significantly different from standard Normal probability 

distributions were modeled as Generalized Extreme Value 

(GEV) distributions. The corresponding with mean, standard 

deviation and a shape parameters were again derived from 

the 14 individual B-Scan images. The common feature 

observed among distributions that did not pass statistical 

tests for normality was that each had a right-skewed 

distribution. The shape parameter of the GEV distribution 

determines the amount and direction of skew present in the 

distributions. The equation for the GEV distribution with 

mean (�), standard deviation (1) and shape parameter (k � 0) 

is given by [19], 

U L B:T�Gá äáê; L ls
ê
p ���LFFsE G:T F ä;

ê
G?5ÞMFs

E G:T F ä;
ê

G?5?5Þ �BKN�sE G:T F �ä;
ê

P rä 

 

Typical examples of Normal and GEV distributions that 

contributed to the model are shown in Figure 4. The 

parameters for each selected model are an average of the 

parameters contributed by each individual B-Scan image. 

For example the mean intensity for the normal model of the 

IPL is the global mean of IPL across the fourteen constituent 

B-Scan images. These parameters (mean, standard deviation, 

and shape parameter) are shown in the last column of Table 

1. 

 

 
TABLE I  

MODEL DESCRIPTION BY RETINAL LAYER 

Layer name Pass ratio Model used 
 

Parameters 

NFL-GCL 4/14 Normal (138.18, 33.48) 

IPL 10/14 Normal (92.48, 14.16) 

INL 0/14 GEV (53.47, 7.87, -0.09) 

OPL 0/14 GEV (92.48, 14.05, -0.12) 

ONL 5/14 Normal (53.47, 7.87) 

PRL 6/14 GEV (111.72, 17.37, -0.15) 

RPE 2/14 Normal (115.36, 24.19) 

Pass ratio: number of images which passed the Shapiro-Francia normality 

test (number passed/total number of images). Two types of models were 

used to model the retinal layer intensity distributions: Normal and 

Generalized Extreme Value (GEV) distributions. Parameters: mean, 

standard deviation, shape parameter (only for GEV). Nerve Fiber Layer-

Ganglion Cell Layer (NFL-GCL), Inner Plexiform Layer (IPL), Inner 

Nuclear Layer (INL), Outer Plexiform Layer (OPL), Outer Nuclear Layer 

(ONL), Photo Receptor Layer (PRL), Retinal Pigment Epithelium (RPE). 

 

D. Contour and gradient modeling 

Average contours were derived from the manually 

segmented B-Scan images belonging to the same C-Scan 

image. This gives an estimate of the average location and 

thickness of each layer for that C-Scan.  

The average gradient profile is calculated from the non-

vascular region of the B-Scan images belonging to the a 

particular C-Scan. This gradient profile was then used as a 

multiplicative model to represent the real gradient in the 

synthetic images.  

E. Blood vessel modeling 

Sample blood vessels were extracted from the B-Scan 

images. A blood vessel template representing the 

approximate structure and intensity of the blood vessels was 

constructed from these extracted structural templates. Such 

templates were then manually added to the vascular regions 

of the synthetic images. To simulate the blood vessel 

shadows found in real images, the regions underneath the 

blood vessels were multiplied by a scalar resulting in an 

overall shift in the layer distributions under the blood 

vessels. 

F. Global noise modeling 

 Speckle noise is inherently present in OCT images. In 

order to model this phenomenon, global speckle noise of 

varying standard deviations was added to the synthetic 

image. This model parameter can be used to vary the overall 

quality of the synthetic images. This can be useful in testing 

the performance of segmentation and denoising algorithms 

on OCT data in the presence of noise variations. 

 

Figure 1. Scanning laser retinal image. Box indicates the relative location 

where the OCT data was acquired 1-2 mm away from the optic nerve head 

center. 
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III. RESULTS 

Synthetic images were created using the above described 

model. Figure 2 shows a sample B-Scan image from among 

those contributing to the model. The corresponding  

Figure 2. Real OCT B-Scan image with arrows pointing to the individual 

retinal layers and thumbnails showing the corresponding intensity 

distributions. 

 

distributions of the layers within this image are also 

identified. Figure 2 is a typical OCT B-Scan image 

demonstrating the different stratified layers of the neural 

retina. The topmost layer (Nerve Fiber Layer-Ganglion Cell 

Layer) is the brightest among all the layers with prominent 

circularly shaped blood vessels. There are 3 large vessels 

seen casting prominent shadows beneath their blood column 

in Figure 1. An hour-glass structural formation is seen 

within the blood vessel lumen formed by the intensity 

variations that is characteristic of retinal blood vessels 

imaged by OCT. The second relatively darker and thicker 

layer is the Inner Plexiform Layer. Below this layer is a thin 

dark band: the Inner Nuclear Layer. This is followed by the 

similarly thin, but brighter Outer Plexiform Layer. Below 

that is the thick, prominent, and dark Outer Nuclear layer 

which is similar in intensity to the inner nuclear layer.  

The photoreceptor layer is beneath the outer nuclear layer 

and is seen as an intermittent banded layer. The 

photoreceptor layer is comprised of the inner and outer 

segments of these cells, each of which contributes to a 

different intensity and structure to make the irregularly 

banded appearance of this layer. Due to the lack of reliable 

and distinct structure in this layer we modeled these cells a 

single layer. The final layer included in our model is the 

Retinal Pigmented Epithelium. This is a relatively bright 

narrow layer adjacent to the deep vascular layer (choroid) 

and external outer tunic of the eye (sclera). Neither the 

choroid nor the sclera are part of the neural retina and are 

not modeled here. 

By inspection of the intensity distributions by layer, most 

of the layers could be modeled using either a normal or 

right-skewed distribution. Also, the two nuclear and 

plexiform layers have relatively similar intensity 

 
Figure 3. Distribution of median pixel intensity by layer across fourteen 

different B-Scan images that contributed to the model.  

 

 
Figure 4. Synthetic B-Scan image with arrows pointing to individual 

synthesized retinal layers and thumbnails showing the corresponding 

intensity distributions. The blood vessels and their artifacts can also be 

observed here. 

 

distributions that permitted us to use similar models for each 

of these respective layers.  

Figure 3 shows the layer-wise variation of median 

intensity across all the fourteen constituent B-Scan images. 

The overall variation in intensity across layers described 

above is demonstrated in this figure. It can be observed that 

almost all the layers have compact distributions with no 

significant skew. This distribution across multiple B-Scan 

images and across multiple C-Scan volumes provides a 

rationale for selecting the global intensity parameters of a 

layer as the average over the parameters of that layer derived 

from the 14 B-Scan images. 
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Figure 4 shows a synthetic image and the intensity 

distributions modeled for each of the layers. The contours of 

the layers of the synthetic image represent the average of 

contours manually annotated from four B-Scan images. 

Every pixel within a layer of the synthetic image is 

randomly drawn from the corresponding modeled intensity 

distribution function for that layer. After the contour and 

intensity parameters were applied to the synthetic data array, 

the gradient model is then multiplied to this synthetic image. 

Simulated blood vessel templates are then added to the 

vascular region of the retinal nerve fiber layer. Lastly, 

shadows are added beneath the added vessels in order to 

model the reduced intensity and contrast seen beneath blood 

vessels in the real OCT images. The agreement of the model 

distributions by layer can be compared with a sample of real 

data by comparing the distributions in Figures 2 and 4.  

IV. DISCUSSION 

In this research we describe the basis and development of 

a statistical model of retinal OCT image data from manual 

segmentation of real data. This model characterizes many of 

the most relevant features present in real data including: 

intensity, contour, gradient, blood vessels, blood vessel 

artifacts and global noise derived from real OCT image data. 

While our use of manual segmentation as the basis for model 

parameters may be a limitation of this preliminary study, 

selection of an appropriate gold-standard is not a trivial 

problem. Despite this potential limitation, our proposed 

model provides a useful tool for future studies. First, it 

provides a test bed for quantifying the effects of various 

image processing routines such as, denoising, registration 

and segmentation. Moreover, it will provide us with a stable 

benchmark to evaluate the statistical performance of these 

operations. Imaging performance and anatomical structure 

can vary in both healthy and in pathological eyes due to 

many factors, including some that relate to pathological 

conditions under study. This model can provide a flexible 

test-bed easily adapted for these varying conditions. 

Further development of this synthetic image data will 

permit us to simulate and assess the experimental effects of 

varying imaging conditions such as cataract, detector noise, 

or other parameters. Future improvements in this synthetic 

model should include additional parameters such as 

consideration for lateral and axial resolution as well as 

global retinal curvature which are not currently being 

modeled. Moreover, it would be easy and useful to apply a 

similar kind of modeling strategy for other types of retinal 

data (ex. human retinal OCT data) and also other imaging 

modalities (ex. ultrasound). Finally, this concept can be 

easily extended to create 3-D synthetic data to assess 

volumetric image processing methods. 
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