
  

  

Abstract—Optical coherence tomography is becoming one of 

the most important imaging modalities in the area of 

ophthalmology because of being noninvasive and by allowing to 

visualize the human retina structure in detail. It was recently 

proposed that OCT data embeds functional information from 

the human retina. Specifically, it was proposed that blood-

retinal barrier status information is present within OCT data. 

Following this rationale, in this work we illustrate (based on 

support vector machines) the possibility to discriminate between 

eyes from healthy volunteers, eyes from type 2 diabetic patients 

with no signs of diabetic retinopathy (ETDRS level 10 eyes) and 

eyes diagnosed with diabetic macular edema, thus confirming 

the presence within OCT data of information on the BRB 

status. 

I. INTRODUCTION 

PTICAL Coherence Tomography (OCT) is a noninvasive 

imaging modality with a wide spread in ophthalmology 

because of its ability to image the ocular fundus in detail. 

Although the primary function of OCT is to document the 

structure of in vivo human retinas, it was recently suggested 

([1]-[3]) that OCT embeds information on the status of the 

blood-retinal barrier (BRB). In [3], it was specifically 

demonstrated the close link between disrupted/intact BRB 

status and changes in the statistics of OCT data from the 

human retina and its association to the retinal vascular 

network in retinas with diabetic retinopathy (DR). 

In the work herewith presented, we propose to assess the 

possibility of classifying a subject’s eye into one of three 

classes (healthy, diabetic and diabetic macular edema) solely 

based on OCT signal without resorting to retinal thickness. 

In this way, we propose to further demonstrate the presence 

of information on the BRB status within OCT data from the 

earliest stages of DR. 

II. MATERIAL AND METHODS 

A. Optical Coherence Tomography 

In this work we resorted to Cirrus HD-OCT (Carl Zeiss 

Meditec, Dublin, CA, USA) for data acquisition. 
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Cirrus HD-OCT is a high-definition optical coherence 

tomography system, of the frequency domain type, allowing 

for the acquisition of 27000 A-scans per second with a depth 

resolution of 5 microns and a transversal resolution of 20 

microns. Two scanning modes are available covering the 

macular area (6000x6000 square microns): a 512x128x1024 

voxels protocol and a 200x200x1024 voxels protocol, the 

former being used in this work. 

Cirrus HD-OCT automatically identifies the ILM (inner 

limiting membrane) and the RPE (retinal pigment 

epithelium), the structures limiting the retina, to compute the 

retinal thickness by measuring the distance ILM-RPE. 

In this work, we made use of these two interfaces to 

segment the retina and to exclude vitreous and choroid data 

from our process. 

Thirty-one eyes from 16 healthy volunteers, 31 eyes from 

18 type 2 diabetes mellitus patients and 31 eyes diagnosed 

with diabetic macular edema (DME) from 22 type 2 diabetes 

mellitus patients were collected from the OCT database to be 

processed and analyzed. 

B. Data Statistics 

Histograms from OCT data in between the ILM and RPE, 

i.e. from the retina, were built for each eye to find a 

Gaussian-like distribution: 
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where µ andσ are, respectively, the average and standard 

deviation values of I (voxel values). 

In a recent paper of Grzywacz et al. [4], authors stated that 

the distribution of OCT data from the human eye fundus is 

better defined by a stretched exponential distribution: 
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with Γ the gamma function. 

The clear difference between these two distributions ((1) 

and (2)-(3)) lies in the fact that we get access to data in the 

logarithmic space while in [4] authors seem to have access to 

data in the linear space. 

The logarithmic space for OCT data results from the fact 

that OCT real values spread in several orders of magnitude 

[4]. 
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In this way, to characterize OCT data distribution as in [4] 

we have to revert the process by computing the exponential 

for each voxel value by: 
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respectively, the voxel value in the linear and logarithmic 

spaces and K a scaling factor. We then fit a stretched 

exponential distribution to determine parameters λ , and β in 

(2)-(3). 

In addition, and because of the expected differences in the 

number of voxels making part of the retina for each eye, e.g. 

due to edema, a probability density function (pdf) was used 

instead of the Gaussian distribution (in the logarithmic 

space) by normalizing the histogram by the number of voxels 

composing the retina. 

Moreover, because10 LOGI
in (4) will became a quite large 

number, (5) was used instead of (4): 
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were LOGI  is the average of 
LOG

I  and L  the nominal 

maximum for
LINEAR

I . 

In this way, any differences in the computed parameters 

from the stretched exponential distribution are solely due to 

the respective shape. 

Consequently, a modified expression for the stretched 

exponential distribution in the linear space was used as 

defined by: 
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therefore adding two new parameters, 0x  (6) and α  (6)-(7). 

C. Features and Support Vector Machines (SVM) 

A total of 43 features were used to characterize each 

retina. 

Four features from the logarithmic space (average, 

standard deviation, skewness and kurtosis), four features 

from the linear space (α , 0x , λ and β ) and three features 

from the fit optimization process (goodness of fit statistics) 

of the stretched exponential distribution (sse – sum of 

squares due to error, r-square – adjusted R-square, and 

exitflag – indicating a successful or unsuccessful 

optimization process). 

These 11 features were computed considering: 

1) the entire retina (data from the ILM to the RPE); 

2) the top half of the retina (from the ILM to half 

distance ILM-RPE); 

3) the bottom half of the retina (from half distance ILM-

RPE to the RPE), and; 

4) the ratio between features from the top and bottom 

halves of the retina (except the ratio of the exitflag). 

The rationale of splitting the retina in two halves is due to 

the previously demonstrated fact that particular information 

on the BRB function status is present on OCT data [3]. 

Moreover, this information is linked to the retinal vascular 

network, which is found in the half of the retina close to the 

ILM [5]. 

All eyes from healthy volunteers receive the classification 

of 0, eyes from diabetic patients received the classification 1 

and eyes with diabetic macular edema received the 

classification 2. 

Publicly available software, LIBSVM (Chang et al., [6]), 

was used. All features were scaled to the range [0,1] or 

[-1,1], as appropriate, and the RBF (radial basis function) 

kernel applied. 

The optima values of C (regularization margin parameter) 

and γ (RBF kernel parameter) were found using the Grid-

search mechanism in two steps. In the first step, the default 

search was used to identify optima values of C and γ from a 

wide range of values. After this initial step, a local search 

was made to fine tune C and γ values to determine a better 

set of parameters. 

The training step of the SVM was carried out using optima 

values of C and γ to compute the model to be used for the 

classification of eyes into one of the three classes: healthy, 

diabetic and diabetic macular edema. 

D. SVM Data Classification 

Using the entire set of data for the training of the SVM, 

over 80% of data was correctly classified, i.e. was classified 

by the SVM system receiving the same classification as the 

one used in the training for the establishment of the model. 

A leave-one-out validation approach was applied to assess 

the feasibility of the system to classify OCT data not present 

in the training set. 

III. RESULTS AND CONCLUSIONS 

Following the leave-one-out validation, over 66% (62 out 

of 93 eyes) were correctly classified (Table 1). On the other 

hand, 11 eyes were incorrectly classified as healthy from 

which 7 were diabetic macular edema eyes. Additionally, 6 

eyes were incorrectly classified as diabetic macular edema 

TABLE 1: CLASSIFICATION PERFORMANCE 

 H D DME 

H 20 (64.5%) 5 (16.1%) 6 (19.4%) 

D 4 (12.9%) 23 (74.2%) 4 (12.9%) 

DME 7 (22.6%) 5 (16.1%) 19 (61.3%) 

Classification performance following the leave-one-out validation, 

with 62 out of 93 eyes (66.7%) correctly classified. H – healthy 

volunteers’ eyes (n=31); D – diabetic patients’ eyes (n=31), and; DME 

– diabetic macular edema eyes (n=31). 

6132



  

eyes while being from the healthy volunteer group. 

Using the exact same set of data, a group of 31 healthy 

volunteers eyes and a group of 30 diseased eyes (from which 

15 were diagnosed DME) were considered to test the 

classification into healthy or diseased eyes (table 2). 

Similarly, considering diabetic patients’ eyes (n=31) and 

eyes diagnosed with diabetic macular edema (n=31), the 

classification achieved is as in table 3. 

In this way, using a 2-step classification system, the 

probability of an eye to receive the correct classification is of 

p=0.677, p=0.753 and p=0.730, respectively for healthy 

eyes, eyes from diabetic patients (non-DME) and eyes 

diagnosed with DME. 

There are two particularly important aspects from the 

work herewith presented. First, diabetic patients (D eyes) 

included in this study were classified as level 10 from the 

ETDRS classification level, meaning that, although being 

diabetic patients, no signs of diabetic retinopathy were 

identified in the eye fundus. 

Second, better figures could have been found should we 

have used additional information, e.g. retinal thickness. 

Nevertheless, the key issue is to demonstrate that particularly 

important information is present in OCT data, from the 

human retina, conveying more information than the simple 

structural one. 

In addition, this study demonstrate that changes in the 

optical properties of the human retina (as identified through 

optical coherence tomography) are associated with diabetes 

and that these changes are present even in diabetic patients 

with no signs of retinal diseases (hence been classified as 

ETDRS level 10). Moreover, changes in the optical 

properties of the human retina seem to be associated with the 

severity of the pathology as suggested by the distinction 

made by the classification process between ETDRS level 10 

eyes and eyes diagnosed with diabetic macular edema. 

In [4], Grzywacz et al. proposed the possibility of using 

OCT data to discriminate between healthy and diabetic 

macular edema eyes, following a different approach. 

While in the work herewith presented we resort to the 

entire retina volume, in [4] the authors resort to local data 

and claim the possibility to identify the location of 

anomalies, although at the expense of requiring to segment 

(four to five [4]) retinal layers, as opposed to our approach 

that makes use of the ILM and RPE segmentation already 

made available by the Cirrus HD-OCT system and most of 

the OCT systems commercially available. 

In addition, the method herewith proposed allows to 

discriminate between healthy volunteers’ eyes, ETDRS level 

10 eyes from diabetic patients and diabetic macular edema 

eyes, therefore being sensitive to changes in the retina before 

these changes can be identified by fundoscopy. 

Finally, these results suggest the possibility of identifying 

diabetic patients based on a noninvasive imaging modality, 

with a false negative rate of less than 12% (11 out of 93 

cases) and to discriminate healthy eyes (non-diabetic 

patients’ eyes) from eyes of diabetic patients with no visible 

signs of diabetic retinopathy within the eye fundus, i.e. 

ETDRS level 10 diabetic patients’ eyes. 
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TABLE 2: CLASSIFICATION PERFORMANCE 

 H Diseased 

H 21 (67.7%) 10 (32.3%) 

Diseased 4 (13.3%) 26 (86.7%) 

Classification performance following the leave-one-out validation. H 

– healthy volunteers’ eyes (n=31); Diseased – diabetic patients’ eyes 

(n=15) and diabetic macular edema eyes (n=15). 

TABLE 3: CLASSIFICATION PERFORMANCE 

 D DME 

D 33 (86.8%) 5 (13.2%) 

DME 6 (15.8%) 32 (84.2%) 

Classification performance following the leave-one-out validation. D 

– diabetic patients’ eyes (n=31), and; DME – diabetic macular edema 

eyes (n=31). 
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