
  

  

Abstract—Live imaging of neural stem cells and progenitors 
is important to follow the biology of these cells. Non-invasive 
imaging techniques, such as phase contrast microscopy, are 
preferred as neural stem cells are very sensitive to photoxic 
damage cause by excitation of fluorescent molecules.However, 
large illumination variations and weak foreground/background 
contrast make phase contrast images challenging for image 
processing. In the current work, we propose a new method to 
segment neurospheres imaged under phase contrast microscopy 
by employing high dynamic range imaging and advanced 
level-set method. The use of high dynamic range imaging 
enhances the fused image by expressing cell signatures from 
various exposure captures. We apply advanced level-set method 
in cell segmentation to improve the detection rate over simple 
methods such as thresholding. Validation experiments in the 
analysis of 21 images containing over 400 cells have 
demonstrated accuracy improvements over existing techniques. 

I. INTRODUCTION 
Neural stem cells (NSCs) and progenitors (NPs) serve as 
excellent in vitro models for the central nervous system and 
the modelling of diseases such as Alzhemier's and 
Parkinson's. NSCs/NPs can grow in a natural 3D culture 
system known as neuropsheres. Multiwell plates can be used 
for neurosphere culture and this combination lends itself for 
drug screening. Our biologist co-authors (S. Shvetha and S. 
Ahmed) notice that live NSCs/NPs in neurosphere culture are 
very sensitive to phototoxic damage and it is not possible to 
use fluorescence to follow the cells. Hence we propose the 
use of the non-invasive phase contrast microscopy to follow 
closely NSCs/NPs. 

Phase contrast microscopy converts small phase shifts in 
the light passing through a transparent specimen into 
amplitude or contrast changes in the image. In positive phase 
contrast microscopy, the specimen is visible with medium or 
dark grey features, surrounded by a bright halo, and the 
background is of higher intensity than the specimen. In 
unstained objects, the natural dynamic range is very low as 
there are limited differences in local brightness, contrast and 
optical density [1]. Phase contrast images are inevitably 
contaminated by nonuniform shading artifacts due to the 
illumination source and the optical influences of the 
containing wells. As a result, the contaminated images may 
have large brightness/contrast changes. Fig. 1 shows tiled 
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images from four wells of a 96-well plate automatically 
acquired in the same batch of a high-content screening 
experiment with the same illumination and camera exposure 
settings. Fig. 2 shows two phase contrast images in two 
different sites of the same well and their thresholding outputs 
by using Otsu’s thresholding method. It is observed that the 
illumination and shading patterns are rather different from 
wells to wells and even between images/sites to images/sites 
within the same well. Obvious failures in dark regions by 
naive method call for advanced automatic object detection 
techniques to handle such images which contain large 
illumination variations.  

 

 
Fig.1. Tiled phase contrast images for four different wells. 

Nonuniform illumination and serious shading appear in all wells. 
Some wells are very dark while others are bright. 
 

 
Fig.2. Phase contrast images of unstained neurospheres: (a) and 

(c) are original images, and (b) and (d) are the thresholded outputs of 
(a) and (c), respectively.  

 
Many existing techniques make use of the characteristics 

that cells appear as darker regions surrounded by brighter 
halos to detect cells in phase contrast microscopy images.  A 
Laplacian of Gaussian based approach is utilized in [2] to 
detect local extrema and treat them as cell centers. This 
approach encounters difficulties in our cases as there are 
multiple foci in a single neurosphere.  Ersoy et al. [3] perform 
cell detection by using ridge measures and a modified 
geodesic active contour for halo exploration. This method is 
vulnerable to background distractions as they form local 
extrema with large intensity curvature. Li et al. [4] also adopt 
the active contour technique but with a different initialization. 
All the above methods do not deal with large illumination 
variations. A preconditioning method is proposed in [5] to 
preprocess interference-based images with nonuniform 
shadow-cast artefacts. This method greatly facilitates cell 
detection but requires careful manual parameter tuning for 
each cell type and illumination pattern. Moreover, separate 
illumination/shading corrections have to be made for each 
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shading pattern, making it impractical for high content 
experiments. 

In this work, we propose a new method to handle very 
large illumination variations for detection of neurospheres. 
This is based on digital phase contrast [1] which utilizes 
high-dynamic range imaging (HDR) to fuse multiple phase 
contrast images acquired under different exposure settings 
[6]. This fusion enables us to enhance all regions in the image 
space by utilizing various singly-exposed images 
complementarily. The fused image is then analyzed through a 
variational level-set technique to segment the neurospheres. 
Validation experiments have demonstrated improved 
performance over existing methods utilizing only 
singly-exposed images.   

II. HIGH DYNAMIC RANGE IMAGING 
Dynamic range (DR) is the ratio between the largest and 

the smallest possible values of a changeable quantity. In 
digital images, an 8-bit image has a low DR equating to 256:1 
(LDR). In contrast, a 32-bit image has a high DR equating to 
232 :1 (HDR). 

The simplest algorithm to create a HDR is to average the 
LDR images iA , 1,..,i N= , acquired at different exposures, 
but multiplied by the factor difference between the LDR bit 
length L and the HDR bit length H . With HDR, one obtains 
more information than either of the previous images.  

In order to generate the largest possible dynamic range 
(hence most information), a weighted average technique is 
used. This method emphasizes more on certain input images 
if their average luminances fall into certain ranges. For 
example, if an image is pure white, it probably doesn't contain 
much useful information, so that image should have less 
impact on the final HDR image [7].  The fused HDR image, 
B , is   
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To show B  in standard 8-bit LDR display devices, 
tone-mapping techniques are applied to map the HDR image 
down to 8-bit range.  Simply, we can obtain the reconstructed 
LDR by 
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In the current work, we adapt a method called adaptive 
gain control with edge detection [7].  In the case where a 
neighbor pixel is too different in intensity from the pixel 
being mapped, a counter is incremented and counts the 
maximum number of pixels that can be too different before 
the inspected pixel is not mapped at all using the averaged 
obtained from its neighbors. In this case, the old luminance 
value is simply assigned to this pixel, which is mapped down 
to a lower color depth linearly by dividing by the brightest 
value in the image.  

Fig.3 shows two phase contrast images of neurospheres at 
different exposures (left, middle). They complement with 

each other and the resultant HDR image (Fig.3 right) is able 
to bring out cells which would otherwise be too dark or too 
bright to be observed easily.  

 

 
 Fig.3. Phase contrast images of neurospheres captured at 100ms 
exposure (left), 500ms exposure (middle) and the HDR image 
(right). The green arrow indicates cells seen easily on 100ms 
exposure image while the blue arrow indicates cells seen easily on 
the 500ms exposure image. It can be observed that the HDR image is 
able to bring out cells from both exposures. 

III. NEURAL STEM CELLS/NEUROSPHERES DETECTION 
METHODOLOGY 

We now introduce our neurosphere detection method. The 
naïve high content screening imaging protocol is modified to 
acquire phase contrast images at various exposures. Our 
method (M0) comprises of three main steps. The first step 
creates a HDR image by combining multiple-exposure 
images at the same sites by using the methods described 
above. The second step performs a background subtraction 
which will reduce the effect of uneven background 
illumination. The final step segments out the cells by 
applying the level set method.  

Phase contrast microscopy cell images present a challenge 
in segmentation due to the presence of severe uneven 
background illumination. In order to offset this problem, we 
apply a simple background subtraction technique to the HDR 
images before performing segmentation. We first apply 
Gaussian blur on the HDR image and then use the same HDR 
image to subtract away the blurred image. The resultant 
image will be the background subtracted image. In general, 
we observe that images with background subtraction give 
better segmentation results compared to images without 
background subtraction. 

The level set segmentation technique is an active contour 
approach which evolves an initial close contour/surface 
according to a rate change partial differential equation. The 
contour/surface is embedded as the zero level-set of a higher 
dimensional implicit function. The evolution can naturally 
split or merge contours and converges to high gradient parts 
subject to data constraints [8]. We adopt a variational 
level-set approach which does not require re-initializations 
[9] for the segmentation of neurospheres and employed the 
boundary of the entire image region as the initialization of the 
active contour. 

IV. EXPERIMENTS AND RESULTS 
In our experiments, a well is covered by 5x5 sites and only 

21 sites are imaged without the four corners. We have imaged 
each site under three different exposures, 30ms, 100ms and 
500ms respectively. Fig. 4 shows the tiled 21 images in a well 
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with an exposure of 100ms. Due to optical artifacts, a 
consistent dark circular band can be observed around the 
perimeter of the well with some irregular shading. The 
ground truths for these images are labeled manually. 
According to domain experts, objects smaller than 64 pixels 
(8x8) are ignored as these are not likely to be neurospheres 
formed by the proliferation of neural stem cells.  Excluding 
these small objects, there are 446 neurospheres in this well 
shown in Fig. 4. The images (size: 464 364× ) in the 21 sites 
are used to verify our methods. In our experiments, we use the 
weighted average method and set the high dynamic range bit 
length as 32 in the creation of HDR images. For background 
subtraction, we use a Gaussian blur with window size = 7x7 
and sigma = 2.  

 

  
Fig.4. A consistent dark circular band can be observed around the 

perimeter of the well. The red marking indicates the full well. The 
yellow marking indicates the brighter inner circle which excludes 
the dark circular band from the full well. 

 
We compared M0 with four other methods. For the first 

(M1) and second method (M2), we perform level-set directly 
on the original images at 100ms and 500ms exposure 
respectively. For the third method (M3), a variation of M0, 
we apply level-set on the HDR image without background 
subtraction. In all the level-set based segmentation 
approaches, we use the same default parameters suggested by 
[9] with maximum 10,000 iterations and the entire image 
region is set as the initial contour. In the last method (M4), we 
apply Otsu thresholding on the original image at 100ms 
exposure. 

In Fig. 5 we show segmentation results of one of the 
images. The red contours delineate the segmented 
neurospheres. It is obvious that M0 achieved the best 
segmentation. M1, M2 and M4, which process the 
single-exposure image, respectively, cannot segment the 
neurospheres properly. M3, on the other hand, can detect 
some but with certain errors. 

Fig. 6 illustrates the tiled segmentation results of the five 
methods. The blue markers outlined the contours of the cells 
labeled in the ground truth and the yellow markers outlined 
the segmentation results by each method. If the segmented 
neurosphere happens to be exactly the same as the ground 
truth, it is marked in yellow. Visually, we observe that M0 
performs the best in all sites among the five methods. 

However, almost all the methods have difficulties in 
segmenting objects in the dark ring. 

 

(M0) (M1) (M2)

(M3) (M4)  
 Fig.5. Comparison of segmentation results between M0, M1, 
M2, M3 and M4. The red markers indicate the segmentation 
contours by each method. 
 

 

 

 
Fig.6. Tiled segmentation results of M0, M1, M2, M3 and M4. 

The blue markers outlined the contours of the cells labeled in the 
ground truth, while the yellow markers outlined the segmentation 
results. The cyan dotted ring outlined the region of interest of the full 
well. The red dotted ring outlined the region of interest of the 
brighter inner region which excludes the dark circular band around 
the perimeter of the well. 

 
For quantifiable evaluations, we compute the sensitivity, 

specificity and positive prediction value (PPV) for each 
method. To facilitate on the computation of the metrics, we 
state the following definitions. Positive (P) is the set of 
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foreground pixels in the ground truth. Negative (N) is the set 
of background pixels. True Positive (TP) is the set of 
foreground pixels in both the segmented result and the ground 
truth. False Positive (FP) is the set of foreground pixels which 
exists in the segmented result but not in the ground truth. 
False Negative (FN) is the set of foreground pixels which 
exists in the ground truth but not the segmented result. True 
Negative (TN) is N – FP.  Therefore, sensitivity = TP/(TP + 
FN), specificity = TN/(FP + TN) and PPV = TP/(TP + FP). A 
perfect segmentation gives 100% for all 3 metrics. 

Table 1 shows the first set of result which considers only 
the brighter circular region in the middle of the well and 
excludes the dark band along the perimeter of the well 
(Fig.4). The second set of metrics computes for the entire full 
well and is presented in Table 2. From Table 1, we can 
observe that M0 generally performs better than other 
methods, with a sensitivity of 98.98%, a specificity of 
66.62% and a positive prediction value of 67.36%. From 
Table 2, although M0 still performs reasonably better than 
other methods, the result is not as favorable as compared to 
Table 1 as its specificity (36.64%) is lower. The main reason 
for this is because M0 and all other methods are unable to 
detect most of the cells that reside in the dark band along the 
perimeter of the well wall. From Table 2, we can also observe 
that M3 offers comparable sensitivity and specificity against 
M0. But its low PPV suggests a high false positive rate and 
hence our preference of M0 over M3. 

 
Table1. Comparison results for only the brighter circular region 

in the middle of the well. 
 Sensitivity (%) Specificity (%) PPV (%) 

M0 98.98 66.62 67.36 
M1 47.30 88.57 5.02 
M2 65.62 54.75 4.77 
M3 87.07 74.73 15.39 
M4 59.09 57.66 4.24 

 
Table2. Comparison results for the entire well. 
 Sensitivity (%) Specificity (%) PPV (%) 

M0 99.58 36.64 72.28 
M1 60.26 91.72 6.50 
M2 69.27 73.78 6.74 
M3 92.62 65.57 21.12 
M4 72.29 59.01 6.03 

 

V. DISCUSSIONS AND CONCLUSIONS 
To follow live NSCs/NPs in neurosphere culture with 

phase contrast microscopy requires the development of new 
image processing techniques. Here we show that digital  
phase contrast followed by advanced image processing can be 
used to overcome the problem of uneven background 
illumination and to segment the neurospheres. Qualitatively, 
high dynamic range imaging enhances the image quality and 
level-set method improves the accuracy. Our method has 

been validated by analyzing over 400 cells with improved 
accuracy over existing techniques. One of our future works is 
to further improve on the detection rate for cells that reside in 
the low illumination regions and exhibit weak signatures. 
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