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Abstract— Tools for high-throughput high-content image anal-
ysis can simplify and expedite different stages of biological
experiments, by processing and combining different information
taken at different time and in different areas of the culture.
Among the most important in this field, image mosaicing
methods provide the researcher with a global view of the
biological sample in a unique image. Current approaches rely
on known motorized x-y stage offsets and work in batch
mode, thus jeopardizing the interaction between the microscopic
system and the researcher during the investigation of the cell
culture. In this work we present an approach for mosaicing of
optical microscope imagery, based on local image registration
and exploiting visual information only. To our knowledge, this is
the first approach suitable to work on-line with non-motorized
microscopes. To assess our method, the quality of resulting
mosaics is quantitatively evaluated through on-purpose image
metrics. Experimental results show the importance of model
selection issues and confirm the soundness of our approach.

I. INTRODUCTION

Microscopic imaging of in vitro live cells represents an
important tool for researchers to study spatial and temporal
evolution patterns of cell cultures. Tools for high-throughput
high-content image analysis, besides saving the microscopist
from tedious as well as repetitive and time expensive tasks,
can enhance the range of functionalities offered tradition-
ally by the microscope, providing virtual microscopy [1]
capabilities. For example, a global view of the whole cell
culture can be useful to identify special spatial patterns,
like cell colonies, or to build a global reference pattern,
for subsequent registration or cell tracking. In addition, it
can provide the microscopist with a more complete scene
understanding of some particular features of the biological
sample under investigation. The full-resolution image of the
whole cell culture can be then used for subsequent image
analysis steps, like cell segmentation, cell counting, multi-
modality image fusion, to cite some of them. To these
purposes, image mosaicing techniques permit to build a
wide field-of-view image of the whole cell culture area
during the microscopic investigation, while fully preserving
the spatial resolution of each single image. Geometric and
photometric properties of the scene must be preserved with
a high accuracy, since they can affect the subsequent image
analysis stages.

Methods and systems currently employed for image mo-
saicing perform in batch mode, building the mosaic at a
separate stage at the end of the acquisition of the whole
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sequence of images. Moreover, geometric registration of the
images makes often use of human intervention and/or relies
on known motorized x-y stage offsets of the microscope
holder [1], [2] to align the images, then requiring the applica-
tion of a subsequent global refinement stage. This approach,
besides not working for the most common non-motorized mi-
croscopes, even utilizing current-generation motorized stage
microscopes however requires the microscopist to wait the
end of the acquisition process to achieve the mosaic.

In this work, we describe an effective on-line approach
used to design an automatic mosaicing method for optical
microscopy imagery, exploiting visual information only. It
relies on an efficient image registration method, robust to
the presence of outliers and partial photometric artifacts
(vignetting and shading). As a consequence, it does not need
automated equipment, and preserves photometric and geo-
metric consistency during the manual motion of the micro-
scope holder. Moreover, its limited computational complexity
could make our approach suitable for real-time performance.
Accordingly, our approach could permit to browse the cell
culture through regions of interest interactively within the
acquisition process, providing the microscopist with an im-
mediate visual feedback of the explored area.

The paper is organized as follows. In Sect. II, the ap-
proaches utilized in this research field are illustrated. In
Sect. III, the mosaicing algorithm we devised is discussed.
In Sect. IV, we describe the experimental testbed and the
resulting mosaics. Their quality is quantitatively assessed
and measured through on-purpose metric indexes. Moreover,
these measures permit to evaluate the geometrical registration
models to be adopted. Finally, Sect. V draws some conclu-
sions regarding the current achievements and proposes future
developments.

II. PREVIOUS WORKS

In image mosaicing, different views of overlapping regions
have to be matched and their geometrical and photometric
relations estimated, in order to align them in a common ref-
erence frame, relying on image registration methods. Image
registration and mosaicing represent an important issue in
the computer vision research community and, accordingly, a
substantial number of papers has been published in this field
in the last two decades.

Images to be registered can be taken from video shots [3]
or can present a wide baseline [4], thus affecting the re-
quirements of the matching stage in terms of robustness.
Both featureless dense correlation-based methods, working
on pixel intensity, and sparse feature-based approaches have
been employed in this stage, depending on the required
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accuracy and computational performance. The work in [5]
is representative of the bundle adjustment approaches, based
on iterative optimization of some non linear cost function on
the whole sequence of images. Work in [3] also follows this
approach. Accordingly, the high computational payload asso-
ciated to this optimization stage requires off-line processing.

As far as mosaicing of light microscopy imagery is
concerned, the algorithms employed in this context have
different hardware requirements and degrees of automation.
A first class of algorithms follow a dense featureless reg-
istration approach with likelihood error functions based on
pixel image intensities and accordingly are computational
intensive. They have been often focused on post processing
the whole sequence of images. The work described in [6]
concerns a semiautomated method, based on pairwise regis-
tration through image cross correlation. Its implementation
performs off-line on a desktop computer, without requiring
the holder to be motorized. In [7], a semiautomated method,
which requires the user to manually align the tiles for a
subsequent fine registration stage, is presented. This work
being focused on accuracy performance (up to sub-pixel
level), images are pixel-wise registered using a dense feature-
less approach, thus resulting in a high computational burden
that prevents this method to be used on-line. The methods
proposed in [8] and [9] are conceived to be used necessarily
with high-precision motorized x-y stages. Metadata provided
from motorized stage controllers [8] and mosaic initialization
through manual alignment [9] are used for a coarse geometric
registration, while global tonal and geometric alignments
are performed by minimizing a cost function over the pixel
intensities of all the images. Accordingly, these methods
work in batch mode at the end of the acquisition.

A second class of algorithms relies on sparse feature-
based registration approaches, detecting and matching salient
regions in consecutive images. The method proposed in [10]
uses wavelet-based edge correlation to detect feature points
and normalized cross correlation for their matching. This
method is not conceived for on-line mosaicing since it needs
global registration to achieve an accurate mosaic.

III. METHODS

The algorithm we devised has been tailored to work on-
line and to be compliant with real time performance, while at
the same time preserving both photometric and geometrical
consistency.

First, inhomogeneous spatial distribution of the micro-
scope light field should be taken into account. With respect
to natural images, in microscopy laboratories we can assume
that the illumination conditions are relatively well controlled.
We have seen from our experience that the limited extent of
the area analyzed is more sensitive to the optical layout of
the microscopy system rather than to external light variation.
This results in evident vignetting and shading effects that
must be compensated before warping the frames into a com-
mon geometrical reference frame. To this purpose, the mi-
croscope luminous field has to be modeled and the acquired
images normalized accordingly. Light distribution within the

microscope’s Field Of View (FOV) can be estimated from
images of an empty field, before positioning the specimen on
the holder. Alternatively, the method described in [11], [12]
to estimate the background (i.e., the culture medium free of
cells) can be used directly during image acquisition.

Geometric alignment has been performed using sequential
image registration (Frame-to-Frame, F2F), applied to con-
secutive frames. A coarse-to-fine strategy, which represents
a good trade-off between accuracy and computational pay-
load, has been employed to this purpose. Initially, the Shi-
Tomasi [13] corner detector is used to extract salient points in
the first image, since it is associated with local gradient infor-
mation, retaining good robustness to noise and illumination
changes. At a coarse level, Phase Correlation [14] is applied
to estimate an average translation vector, common to all the
pixels of the previous image, at pixel level accuracy. At a
finer level, the translated coordinates of the detected salient
points are used as guess locations to feed the Lukas-Kanade-
Tomasi (LKT) tracking stage [15], thus yielding sub-pixel
accuracy. This approach is more robust to large translations
since it overcomes the small-signal approximation upon
which the LKT linearization is based.

Once sparse features correspondences are established, the
geometrical transform linking the two images can be esti-
mated by Least Square regression on a given model. Since
the thickness of the specimen (some microns) is negligible
with respect to the working distance of the microscope ob-
jective (several centimeters), the scene can be considered as
being planar. Under these conditions, corresponding features
(Xi, Xj) of two consecutive views (Ii(x, y), Ij(x, y)) are
related by a planar homography Hj

i , with Xj= Hj
i · Xi.

However, taking into account the physical constraints of
the microscopy system (small extent of the scene depth,
narrow FOV, negligible holder mechanical play, etc.), this
general model can be relaxed to nested sub-models, the affine
and the translative models, respectively. The Direct Linear
Transform algorithm [16] has been employed, jointly with
the RANSAC [17] stage, for the robust estimation of these
models, being imaged live structures. We have chosen the
mosaic reference frame to be coincident with the first frame,
so that the mosaic warping matrix for the nth frame, Mn, can
be obtained by incrementally chaining the estimated pairwise
transform matrices Hj

i , according to:

Mn =

n−1∏
i=0

Hi+1
i (1)

The nth image is then warped into the mosaic reference
frame according to the matrix Mn using bilinear interpola-
tion and merged into the mosaic using a stitching approach.
This method has been preferred to traditional blending ap-
proaches in order to avoid ghosting effects due to the motion
of particles in temporally adjacent frames.

IV. EXPERIMENTAL RESULTS

In order to test our algorithm, image sequences of bio-
logical samples have been acquired in phase contrast mode,
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using a standard, non-motorized, optical microscopy instru-
mentation. An inverted microscope Nikon Eclipse TE2000-
U, widely used in research labs, has been equipped with
a digital camera (Nikon DXM1200) able to perform live
acquisition at 640 × 512 pixel resolution. Our algorithm
has been tested on different sequences of several biological
samples processed by a consumer PC. Due to the lack of
space, here we just report results related to one sequence
of 60 images (59 image pairs) of a histological sample
(HS, hereinafter) of altered bone tissue. Incremental pairwise
registration has been performed using the three warping
models in Sect. III. In Fig. 1 (a), the resulting mosaic for

(a)

(b) (c)

Fig. 1. (a) Mosaic obtained from the sequence HS using F2F registration
with flat field correction for the translative model. (b) Details of the mosaic
achieved without applying the flat field compensation compared with (c) the
correspondent tonally-aligned region.

the translative model only is shown, being the differences
with the affine model negligible. Fig. 1 refers to a detail
of the mosaic obtained with translative model, without (b)
and with (c) the application of the flat field correction stage.
In the first case, it can be clearly noticed the presence of
seams due to shading and vignetting effects. These artifacts
disappear when the flat field correction is applied.

In Fig. 2 (a), the resulting tonally-aligned mosaic for the

(a)

(b) (c)

Fig. 2. (a) Mosaic obtained from the tonally aligned sequence HS using
the projective model. (b), (c) An image pair with a small number of features
concentrated in one region (ill-conditioned problem for complex models).

projective model is shown. Fig. 2 (b), (c) shows how the error
propagation leads to large, unnatural, image deformations,
due to the ill-conditioned nature of the estimation of the
projective model, being the data used for model estimation
small in number and concentrated in a small region [18].

The quality of the resulting mosaic can be assessed
quantitatively using proper quality indexes. Since the experi-
mental equipment is not automated, ground-truth data are not
available, not even as far as the holder motion is concerned.
The only ground-truth data available are the single frames ac-
quired during the holder motion, that is the reference images.
Accordingly, the information contained in the single frame
can be compared with its corresponding area in the mosaic
according to some likelihood metric. Given the sequence of
N reference images Ii to be mosaicked, let Ri

I(x, y) be the
ith warped reference image, achieved by warping Ii(x, y)
according to the matrix M i, and Ri

M (x, y) be the mosaic
region having the same support. The area Ri

M (x, y) of the
mosaic is generally the result of the contributions of the
Ri

I(x, y) and also of other different warped reference images.
Accordingly, Ri

M (x, y) is generally partitioned into mi + 1
regions Ai

i(x, y) . . . A
i
i+mi

(x, y), each partition containing
only the mosaic pixels derived from one of the reference
images that are warped into Ri

M (x, y) (see Fig. 3). For the

Fig. 3. Explicative figure for the symbols used compute quality metric
indexes (mi=3 in this case).

generic ith reference image, the support Si used to compute
metric indexes is defined as the union of the partition subsets
of Ri

M (x, y), except for the Ai
i region which contains infor-

mation related to the ith reference frame only. This region is
simply obtained through the estimated warping, and its pixels
must not be taken into account in the comparison between
Ri

M (x, y) and Ri
I(x, y), since they would cancel out (up

to an interpolation effect) in this comparison. Accordingly,
the Root Mean Squared Error (RMSEi) and the Signal to
Noise Ratio (SNRi) can be defined by considering the image
intensities on the support Si(x, y), with cardinality P (Si),
as follows:

RMSEi =

√√√√ ∑
(x,y)∈Si

(Ri
I(x, y)−Ri

M (x, y))2

P (Si)
(2)

SNRi =


∑

(x,y)∈Si

(Ri
M (x, y))2∑

(x,y)∈Si

(Ri
I(x, y)−Ri

M (x, y))2

 (3)
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usually expressing SNR in [dB]. These indexes can be
extended considering all the supports Si(x, y), so that global
RMSEM and SNRM can be computed for the resulting
mosaic. Table I reports values of these indexes relative to
the sequence HS, without (HS-RAW) and with (HS-FF)
the application of the flat field compensation, for the three
warping models. To assess consistently the effect of the flat

Sequence RMSEM SNRM [dB]
Trasl Affine Proj Trasl Affine Proj

HS-RAW 4.77 4.36 10.21 29.13 29.91 20.51
HS-FF 2.72 1.99 8.62 33.52 36.22 24.78

TABLE I
QUALITY METRIC INDEXES FOR THE 60-FRAME HS SEQUENCE.

field compensation only, the geometric model must be fixed,
in order to separate geometric and photometric effects. Fixed
a model, by applying the flat field correction the RMSE value
decreases, while conversely, as expected, the SNR increases,
for all the three models. This is consistent with the improved
visual quality of the mosaics due to the flat field correction
stage, for all the adopted models.

In order to evaluate consistently the soundness of the
selected model with respect to their geometric distortions,
the values of the metric indexes for the three models must be
compared once the flat field correction has been applied, that
is comparing values on the HS-FF row only. Considering
the RMSE in the HS-FF row, for both translative and
affine models the corresponding values are quite small,
both in absolute terms and in comparison with the gray
level ranges of the images (0-255). For the projective
model, the RMSE values are bigger, due to the large image
distortion introduced by this model. The SNR values show,
as expected, an opposite trend, decreasing for the projective
model. Accordingly, in absolute terms the translative and
the affine model performances are very similar (the latter
being slightly better), and worsen, as hypothesized, for the
projective model. For these reasons, the affine model can
be considered a good compromise between robustness and
complexity.

V. CONCLUSIONS AND FUTURE WORKS

This work presents the algorithm we have conceived for
mosaicing of optical microscope images. It is based on in-
cremental image registration and exploits visual information
only. Through the proposed method, microscope capabilities
can be extended and researchers provided with a global view
of the whole biological sample directly during its investiga-
tion. Since our algorithm is based on visual information only,
thus not relying on external automated equipment, several
issues had to be faced. Photometric effects, like vignetting
and shading artifacts, must be compensated. Furthermore,
geometrical registration has to comply with sub-pixel accu-
racy, preserving robustness even in the presence of outliers.
An incremental coarse-to-fine registration approach has per-
mitted to face these problems at an acceptable computational

payload, being suitable to work on-line. Experimental results
have confirmed the efficacy of our approach, emphasizing
how a correct choice of warping model can improve the
quality of geometric registration.

While going on with system integration, these considera-
tions are prompting us to deepen the study of some robust
model selection criteria. Also, strategies to compensate, at
an acceptable time cost, for error drift effects intrinsic to our
frame-to-frame approach, are currently under investigation.
Finally, we are extending our approach to color images,
although the mosaic still undergoes false color artifacts.
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