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Abstract— Vignetting is one of the most common problem
that may affect digital imaging. The effect becomes particularly
evident when images are stitched together to increase the
camera’s field of view (e.g., when building a mosaic), where
it can lead to errors in automatic analyses. To correct the
effect, the most common approach is to acquire an empty field
image in advance that is used later to perform a flat field
correction on every subsequently acquired image. However, in
several cases, such as when dealing with off-line images or with
real time acquisitions, this is not a viable option. The method
we propose relies on a non parametric model to characterize
in real time the vignetting function from the specimen itself, by
using our foreground/background segmentation algorithm. The
function is computed over a background built incrementally,
detecting regions free of objects of interest. The experiments
carried out using cell cultures and histological samples prove
that our method yields results at least comparable to those
achieved by using empty field.

Index Terms— vignetting, microscopy, real time, flat field
correction, mosaicing

I. INTRODUCTION

D IGITAL imaging plays a major role in modern
medicine thanks to the continuous progress of equip-

ments during the last decades and its role is going to be
even more prominent in the near future [1]. One of the most
common problems that affect digital imaging based on CCD
sensors is “vignetting”, the radial falloff of image intensity
propagating from the center of the optical axis, depending
on the setup of the optical system [2].

Vignetting represents a problem for a wide class of au-
tomatic image analysis applications such as segmentation,
tracking and rendering, but its effect is particularly notable in
mosaicing, when two or more images are stitched together to
increase the camera’s Field Of View (FOV) [3] [4]. Besides,
mosaicing fulfills an increasing demand arising from the need
to understand the behavior of cell colonies and to study
histological tissues [5] [6]. Unfortunately, images undergoing
vignetting show seams in the stitched regions of mosaics,
that could mislead visual analyses and introduce errors in
the automatic ones.

The problem of vignetting has been extensively treated
in the last years and several solutions have been proposed,
mainly to correct mosaics, often with post processing op-
erations (such as blending or spatial filtering), leaving the
characterization of vignetting out of consideration. However,
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to preserve information and details, taking into account the
vignetting characterization is mandatory [7].

The most trivial but common approach is acquiring an
empty field image in advance [5] [8] [9]. However, several
reasons could yield this image not be achievable. Simply,
because images have been acquired by third parties and any
empty field has not been taken. But also when dealing with
real time mosaicing: for instance, in case of exploratory
investigations carried out with microscope, it may happen
that unexpectedly the researcher starts finding out the object
of interest. It could be unfeasible to acquire an empty field
starting from scratch and then retrieving the region of interest
being mosaiced.

All the methods conceived to characterize vignetting from
a single image can be classified into two categories. In the
first class, the methods exploit complex object segmentation
and recognition approaches to estimate the vignetting func-
tion [10], this being not suitable for real time applications.
In the second class, methods employ priors on shape [11]
or distribution [12] of the vignetting function, that are not
suitable for general purposes. On the contrary, methods
gathering information from image sequences may collect
sufficient information that permit to characterize vignetting
without requiring complex and computational demanding
approaches. However, these methods either need several
images [2] [3] or exploit parametric models suitable just as
an earlier approximation, unless more specific information
regarding optics is known in advance [4].

In this work, we present a general purpose approach that
does not exploit any prior information about the camera or
the system. Rather, it relies on a non-parametric method to
both characterize vignetting and remove its effect in images
acquired with an optical microscope. Our method is capable
to extract all the necessary information from a sequence of
images, even containing objects of interest. This makes our
approach suitable to be used even during normal operator’s
inspection activities. Besides, the image sequence used as
a bootstrap is not discarded, but subsequently included in
the mosaic after being corrected from vignetting artifacts.
The experimental results, carried out using cell cultures and
histological specimens, which both cover the most relevant
part of the biological routine examinations, prove that our
method is capable to remove vignetting effectively. Besides
offering a visual evaluation, we also propose a quantitative
analysis.

This paper is organized as follows. Sect. II briefly dis-
cusses the state-of-the-art of the vignetting correction ap-
proaches. Sect. III describes the structure of our algorithm.
Sec. IV analyses some experimental results proving the

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 6166

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



effectiveness of the solution we conceived. Closing remarks
are given in Sect. V.

II. PREVIOUS WORK

To correct and to characterize vignetting, often the easiest
way is the preferred one: an empty field is acquired in
advance. In [5], a reference image of the glass slide without
any underlying tissue is acquired in advance and all the
images are corrected by subtracting this reference. In [8],
an ordinary white paper image is captured and used as
the reference object. The vignetting function is calculated
through normalization and the acquired images are corrected
through a division by the vignetting function.

Unfortunately, an empty field image could be not at
one’s disposal. In [10], the vignetting function is charac-
terized arising from the image itself. The method relies
on a segmentation step to reveal areas with uniform scene
radiance where gradual image intensity variations can be
attributed to vignetting. Quality performance is strongly
influenced by segmentation and it is very CPU intensive. An
improved method is described in [11]. Here, no segmentation
is required and this method achieves improvement in both
performance and computing time. Despite that, the method
relies on the center and the shape of the vignetting function is
known a priori, thus limiting the applicability of the method
in real contexts.

Nevertheless, due to noise and artifacts, characterizing the
vignetting function from a single image is an ambitious
goal. In [4] [2], methods are proposed to estimate the
vignetting function starting from an image sequence. The
authors rely on corner based tracking methods using several
overlapping images. Both the methods are conceived for
real world scenes and fail in case of unstructured scenes,
such as cell cultures, that frequently show low characterizing
corner points. In addition, both methods rely on priors such
as the symmetry of the vignetting function, described by
parametric models, that could not fit real cases. On the
contrary, the non parametric model described in [3] starts
from a sequence of partially overlapped images and it is of
general purpose. The authors need correspondences of quite
evenly distributed corners over the whole FOV: however,
in practice overlapping images could not be feasible, due
to scene evenness, and image registration could be hard to
perform, accordingly.

III. MODEL AND METHOD

Starting from the general camera image model proposed
in [2] [3] [4], we can express a generic image I(x) (where
x is a lexicographically ordered vector of coordinate points)
according to Eq. 1:

I(x) = r(G · V (x) · L(x)) (1)

where r is the camera response function, G is the amplifier
camera gain due to exposure, V (x) is the spatial variant
vignetting function, and L(x) represents the scene intrinsic
property. In case of outdoor images the scene intrinsic prop-
erty L(x) is the scene radiance. In brightfield microscopy

L(x) represents the transmitted light, whereas in phase
microscopy it is the transmitted light spatially modified by
the phase shift due to refractive index of the specimen. We
consider r as being linear and spatial invariant, although it
can be easily generalized to non linear functions [2] [4]. If
L(x) is spatially uniform, we can define an homogeneous
image B according to Eq. 2:

B(x) = R ·G · V (x) · L (2)

where R converts irradiance in gray levels. Supposing G > 0
and V (x) ≥ 1, it is possible to estimate the vignetting
function V (x) by normalizing B for its minimum value,
according to Eq. 3:

V (x) =
B(x)

min(B(x))
(3)

Dividing an image I(x) by V (x) yields an undistorted
(vignetting free) image, without any spatial tonal variations:
this procedure is known in literature as flat field correction.
We turn our attention to optical microscopy, where most of
the routine examinations regard culture cells and histological
samples. Each image is conceptually subdivided into two
complementary regions: foreground and background ones.
Here, the background (being the cover glass in histology
and the culture medium in cell image analysis) is always
quite uniform and it can be roughly considered as a single
isotropic object.

Our method aims at detecting and extracting background
regions from a sequence of images, captured randomly in
real-time, to reconstruct a dense background from which
to estimate the vignetting function. The estimation of the
background of the specimen under analysis is then per-
formed incrementally until enough information is gathered
from the input images. As the background, we consider
image regions in which the first derivative is quite low.
A robust morphological opening is performed on the noisy
estimation of the mask of background pixels M to prevent
any foreground pixel to be included. We stop reconstructing
the background when it covers at least P% of the image.
The lacking data are replaced using interpolation, where
applicable, and extrapolation. In particular, at the borders
of possible holes we follow the gradient of the surrounding
region, after that the gradient vanishes so to form a plateau.
Where more images present background in the same position,
we use redundant information to reduce the noise through a
mean temporal filter. To regularize the reconstructed dense
background we perform a high order polynomial fitting. At
last, we can estimate the vignetting function by following
Eq. 3.

The algorithm can be outlined as in Algorithm 1, where the
values in the mask M are the central derivatives along rows
and columns of images Ii and TB represents the threshold
of the gradient magnitude under which the image region is
considered to be uniform and it depends on the curvature of
the vignetting function.
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Algorithm 1 vignetting function estimation
1. while estimated background region < P · size(I)
2. M ← background’s mask of image Ii
3. foreach (x) in Ii
4. if M(x) < TB

M(x) = 1
else

M(x) is void
5. Bi(x)← Ii(x)· morphological opening(M )
6. i = i+ 1
7. B(x)← fitting(temporal mean(Bi(x)))
8. V (x) = min(B(x))

B(x)

Once the vignetting function is estimated, the flat field
correction is performed for each acquired image to remove
the vignetting effect.

IV. EXPERIMENTAL RESULTS

The experiments aim to assess the improvement our
method can yield in terms of images’ vignetting removal
by comparing mosaics obtained through our estimated vi-
gnetting function with those generated without using our
method. To provide a numerical assessment of results we
have used two different metric indexes, widely employed in
literature [8] [13] [12]: the Signal to Noise Ratio (SNR),
the basic index in signal analysis and the Universal Quality
Index (UQI) [14], the latter representing image quality more
closely to the human visual perception.

The experimental results have been performed on several
test images sequences, acquired using different cameras and
microscopes. Here we only show the results performed on
two out of the many image sequences analyzed, chosen
as representative classes of cells and histological samples,
respectively. Both have been acquired in phase contrast with
a magnification factor of 100× by using a non-automated
inverted microscope (Nikon Eclipse TE2000-U), equipped
with a digital camera (Nikon DXM1200). All the images
acquired are 640×512 pixel in size. G has been kept constant
for all the images of each sequence. As for the parameters of
Algorithm 1, extensive assessments have proved that TB = 4
is fair even with strong curvatures and P = 90% is good
for all the sequences. However, this is not a too sensitive
parameter: a higher threshold simply would slow the method
down, requiring more images.

As the first step, we have acquired the sequence of empty
field images used to built the vignetting function of ground
truth (VGT (x)) according to Eq. 3. Following, the two se-
quences of overlapped images have been acquired. It is worth
remarking that our algorithm does not require any image
overlapping and this is performed for measuring purposes
only, to achieve the mosaics. The “stem-cells” sequence,
hereinafter S1, is composed of 12 images representing mes-
enchymal stem cells with an approximate confluence of
50%, where the content of the cells is uniform at human
sight and the contrast is nearly absent. The “histological”
sequence, hereinafter S2, is a set of 15 images acquired

from a histological sample, showing a higher dynamic range,
with well defined contrast and object’s contours. Then, we
have estimated the vignetting function VS1(x) and VS2(x)
from the two image sequences, by following the steps of
Algorithm 1. In our experiments, before registering images
in the mosaics, they all have been used to estimate the
vignetting function of the sequences: for S1 and S2, the lack
of background is below 2% and below 1%, respectively.

A wide amount of methods has been proposed in literature
to built mosaics of images acquired with non automated
microscopes [5] [6] [7] [15] [16]. We chose [16] because
it allows to build a mosaic incrementally during the manual
motion of the microscope holder.

Fig. 1 shows the mosaics referring to S1. Fig. 1 (a)

(a)

(b)

Fig. 1. Mosaics from the sequence S1. In (a), images are simply stitched
together, while in (b) the mosaic is obtained with our vignetting correction.

refers to the mosaic built by stitching together the original
(uncorrected) images. The effects of vignetting are evident:
stitching regions are markedly visible. On the contrary, no
seems are visible in the mosaic built using our vignetting
correction (Fig. 1 (b)). Also, visually they are indistinguish-
able from those built using the ground truth VGT (x) (here
not shown). Results for S2 are similar: two images’ details
referring to the same region have been extracted from the
mosaics achieved without and with our correction method
and shown in Figs. 2 (a) and 2 (b), respectively.

To numerically measure the quality of our vignetting cor-
rection, SNR and UQI have been evaluated in the overlapping
area of the mosaics. Table I reports the outcome of this
comparison. As expected, both the indexes confirm that the
vignetting correction yields an improvement. On the other
side, the value obtained with both the indexes are comparable
when considering VGT (x) and our vignetting functions. In
general, SNR is always better in S1 than S2, this probably
due to the cell images being naturally more smoothed. The
wider photometric range of S2 is probably the cause of
an overall greater amount of noise that worsens the SNR,
although slightly. At the same time, this points out a better
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(a) (b)

Fig. 2. Two details of the same region, extracted from the mosaics obtained
with sequence S2. In (a), images are simply stitched together and vignetting
effect is markedly visible. In (b), the mosaic obtained with our vignetting
correction proves the effectiveness of our method to eliminate seams.

TABLE I
NUMERICAL EVALUATION OF MOSAICS’ QUALITY

Mosaic set and IF used in correction SNR UQI
stem-cells (simple stitching) 27.80 0.82

stem-cells (VGT (x)) 30.74 0.88
stem-cells (VS1(x)) 30.91 0.89

histological sample (simple stitching) 27.66 0.94
histological sample (VGT (x)) 30.60 0.96
histological sample (VS2(x)) 30.39 0.96

contrasted image that is probably the reason why the UQI
is always better for S2. Moreover, the improvement yielded
by vignetting correction has been more effective for S1: in
fact, the errors are more evident in low contrast images and
the correction accordingly.

V. CONCLUSION AND FUTURE WORK

In this work, we present a non parametric vignetting
estimation method suitable to work on line for microscopic
image analysis. It has been conceived to be used in case
the empty field is not available (for instance, on sequences
previously acquired). While most of the methods in liter-
atures rely on empty field images or complex matching
methods exploiting sequences of images, our approach per-
forms a background/foreground segmentation by extracting
quite uniform regions from the sequences of images, even
during normal inspection work. Also, we do not make any
assumption regarding properties of the vignetting function
(e.g. symmetry) and the linearity of the sensor’s response
function is not a requirement. The effectiveness of our
method has been assessed by correcting images of histo-
logical and cell cultures’ specimens that both cover the most
common microscopic routine examinations. The vignetting
function has been estimated from the specimen itself by using
our method and, for comparison purposes, from empty field
images. Couples of mosaics built with simple stitching and
using these corrections have been compared together. The
results analysed by using common error indexes and quality
metrics prove that our method performs at least as good as
the empty field-based methods.

As for the improvements, we are working on relaxing the
termination condition of the algorithm, by using the distri-
bution of holes rather than a global threshold. In addition,
new error metrics are being studied in order to capture
the improvements achieved by our method, from both a
quantitative and a perceptual point of view.
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