
  

  

Abstract—Digital breast tomosynthesis (DBT) is a limited-
angle tomographic x-ray imaging technique that reduces the 
effect of tissue superposition observed in planar 
mammography.  An integrated imaging platform that combines 
DBT with near infrared spectroscopy (NIRS) to provide co-
registered anatomical and functional imaging is under 
development.  Incorporation of anatomic priors can benefit 
NIRS reconstruction.  In this work, we provide a segmentation 
and classification method to extract potential lesions, as well as 
adipose, fibroglandular, muscle and skin tissue in 
reconstructed DBT images that serve as anatomic priors during 
NIRS reconstruction.  The method may also be adaptable for 
estimating tumor volume, breast glandular content, and for 
extracting lesion features for potential application to computer 
aided detection and diagnosis.   

I. INTRODUCTION 
AMMOGRPHY provides a two-dimensional (2-D) 
projection image of the three-dimensional (3-D) breast 
that results in tissue superposition.  This could lead to 

callbacks for additional imaging, missed cancers and false 
positives.  Digital breast tomosynthesis [1] is a limited angle 
tomographic x-ray imaging technique that acquires multiple 
projections over an angular range of ~ 15± o .  The acquired 
projections are reconstructed to ~1 mm thick slices parallel 
to the x-ray imaging detector using analytical or iterative 
methods [1-5].  Breast simulating phantom studies and 
clinical trials have shown the benefits of DBT [1, 5-7].  
However, DBT provides anatomical images only.  Near 
Infrared Spectroscopy (NIRS) allows non-invasive imaging 
of total hemoglobin, oxygen saturation, water content, 
optical scattering, and lipid concentration [8] through 10 cm 
of breast tissue.  These properties are important 
physiological parameters that can characterize breast tissue 
and offer contrast in tumors [9, 10]. Increased total 
hemoglobin is likely in malignant versus benign lesions 
because of the leaky, more densely packed vasculature in 
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breast cancers. Additionally, increased metabolism of 
malignant tumors could decrease hemoglobin oxygen 
saturation.  However, NIRS exhibits poor spatial resolution 
due to excessive light scatter.  Incorporating anatomic priors 
has shown to improve the spatial resolution and the 
quantitative accuracy of NIRS reconstruction [11-13].  
Hence, we and others [14] are exploring the potential of a 
combined DBT-NIRS system.   

II. METHOD 
Segmentation and classification of reconstructed digital 

breast tomosynthesis images is non-trivial due to the 
severity of out-of-slice artifacts arising from angular under-
sampling.  In addition, DBT images contain more x-ray 
scatter than mammography due to the lack of an anti-scatter 
grid during acquisition of projections.  X-ray scatter causes 
artifacts and quantitative inaccuracies in the reconstructed 
DBT images. Hence, a six-step process was developed and 
applied to anonymized images from a prior institutional 
review board (IRB)-approved, HIPAA-compliant clinical 
study [6].  Fig. 1 shows the imaging geometry (not drawn to 
scale) and the labeled axes that define the image coordinate 

system.  Sequentially, the steps involved are: (1) angular-
constrained bilateral filtering along the x-z plane; (2) 
unsharp masking along the x-y plane; (3) anisotropic 
diffusion filtering along the x-y plane; (4) background 
correction along the y-z plane; (5) fuzzy c-means based 
segmentation of the 3-D image stack; and (6) morphological 
operations for void filling of segmented areas.  Rationale for 
each step is provided in their description below.  All steps 
were implemented in MATLAB 7.7.0 (R2008) on an Intel 
Pentium workstation (2.67GHz dual quad-core processors, 
24GB RAM, 64-bit Windows XP).   
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Fig. 1.  Imaging geometry for DBT acquisition (not drawn to scale), 
over the angular range of 2θ.  The labeled axes define the orientation 
in which the filters are applied.    
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A. Angular-constrained bilateral filtering 
The out-of-slice artifacts in DBT reconstructions appear 

as laterally shifted low-intensity copies of objects from 
slices other than in focus, with their intensity reducing as a 
function of distance from the slice in focus.  If the 
reconstructed slices are stacked and viewed along the x-z 
plane, they appear as "X"-shaped artifacts.  Fig. 2a shows an 
x-z plane from a clinical case that was reconstructed to 56 
slices (z-axis) of 1 mm thickness.  We chose a nonlinear 
edge-preserving bilateral filter [15-17] applied along the x-z 
plane to reduce these out-of-slice artifacts.  Specifically, the 
bilateral filter proposed by Chen [16] was modified by 
incorporating a 2θ angular constraint corresponding to the 
acquisition angular range.  Fig. 2b and 2c show the 23x23 
Gaussian filter kernels before and after application of the 
2 30θ = o  constraint.  Fig. 2d shows the corrected x-z plane 
corresponding to Fig. 2a that demonstrates a reduction in 

out-of-plane artifacts.      

B. Unsharp masking 
We applied an unsharp masking technique along the x-y 

plane to provide edge enhancement.  The images were low 
pass filtered with a 5x5 Gaussian kernel, followed by 
subtraction of the low pass filtered image from the original 
image.  Addition of the resultant image with a weight of 2 
provided edge enhancement.  This above process could also 
increase the high frequency noise in the images.   Hence, we 
used anisotropic diffusion filtering for noise regularization.    

C. Anisotropic diffusion filtering 
We applied an edge-preserving, iterative, anisotropic 

diffusion filter described by Perona and Malik [18] for noise 
regularization along the x-y plane.  After multiple attempts, 
we found that a diffusion constant value of 30 that controls 
the sensitivity to gradients, with 5 iterations, yielded desired 
results.  This filtering step is necessary to minimize the 
effect of noise while preserving the edges for segmentation.  
Fig 3 shows a slice (x-y plane) of the clinical case prior to 
and after application of each of the aforementioned steps.  
Visually, the filtered images showed reduced noise and do 

not appear to distort lesion features.  This is particularly 
important if the techniques proposed in here were to be 
adapted for lesion feature extraction in computer aided 
detection and diagnosis.   

D. Background correction 
Inclusion of x-ray scatter in DBT reconstructed images 

results in quantitative inaccuracies and cupping artifacts, 
wherein the slices (x-y plane) at the periphery of the breast 
have, on average, increased intensity relative to, those in the 
center of the breast.  This effect coupled with substantial 
out-of-slice artifacts could be problematic for segmentation.  
If they are not accounted for and corrected, lesion contrast 
could be sufficient even in the top and bottom most slices 
(x-y plane) which are composed of skin, that could be 
segmented as part of the lesion.    Hence, a background 
correction method is necessary. 

The user provides the input (single mouse click) on the 
location of the lesion from which the volume of interest 
(VOI) encapsulating the lesion was extracted.  Within the 
VOI, normalizing the signal intensity in each slice (x-y 
plane) by its average computed over all slices corrected for 

 
Fig. 2. a. Shows an x-z plane image from the 3-D DBT image stack 
for a clinical case.  b. 23 x 23 Gaussian kernel used in the bilateral 
filter before modification.  c. Modified Gaussian kernel with an 
angular constraint of 2θ corresponding to the angular range during 
projection view acquisition.  d. x-z plane after application of the 
angular-constrained bilateral filter that shows a reduction in out-of-
plane artifacts.  Zoomed (1.5X) regions of interest before and after 
application of the filter are shown. 

 
Fig. 3. Shows a single slice (x-y plane) of the reconstructed clinical 
case where the lesion is prominent prior to and after application of 
each of the following steps: a. reconstructed slice prior to filtering; b. 
after angle-constrained bilateral filtering; c. after unsharp masking; d. 
after anisotropic diffusion filtering.  Visually the filtered images 
showed reduced noise and did not distort lesion features. 
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fluctuations in mean signal intensity across slices.  Fig. 4 
shows three slices (x-y plane) extracted from the volume of 

interest prior to and after normalization. 
 Chan [19] described a background correction technique 

that was used with a method for computer-aided 
classification of mammograms.  We applied a similar 
correction along the y-z plane.  Fig. 5 shows a slice 
extracted from the VOI where the lesion is prominent, 

before and after application of the background correction. 

E. Fuzzy C-Means (FCM) segmentation 
Fuzzy C-Means (FCM) clustering algorithm is a widely 

used automated and unsupervised technique for medical 
image segmentation [20].  Several investigators have applied 
this technique for lesion segmentation in digital 
mammography and breast MRI [19, 21, 22].  In our 
implementation, the FCM clustering algorithm classifies 
pixels with similar gray levels into a cluster.  After initial 
arbitrary assignment of the center of a cluster, it is iteratively 
updated by minimizing an objective function that is 
dependent on the Euclidean distance of gray levels to the 
center of the cluster.  We applied this FCM clustering 
method to segment the 3-D VOI into two clusters 
representing the background tissue and the lesion.  This 
clustering generated a rough 2-D binary mask for each slice 
that needed further refinement.  Fig. 6(a) shows the results 
of FCM clustering applied to a representative slice (x-y 

plane) of the VOI shown in Fig. 5(b).     

F. Additional morphological operations 
Masks generated from FCM clustering may result in 

isolated pixels that correspond to pixel gray levels similar to 
the lesion.  Hence, additional morphological operations are 
required.  The morphological operations performed were 
area filtering to extract the largest connected label to 
represent the lesion; 3-D void filling; removal of salt and 
pepper noise by morphological binary opening followed by 
binary closing; and, residual removal and mask smoothing 
by binary erosion followed by binary dilation.  Fig. 6b 

through Fig. 6d shows the result after each step. 
In addition to FCM-based segmentation of the lesion, 

application of the FCM clustering algorithm on each 
anisotropic diffusion filtered slice (x-y plane, similar to that 
shown in Fig. 3d) yielded segmentation for adipose, 
fibroglandular, skin, and muscle tissues.  It was necessary to 
segment the lesion from the background independently of 
other tissues, as the gray level of the lesion is similar to 
fibroglandular tissue.   Fig. 7a shows a representative DBT 
reconstructed slice prior to segmentation.  Fig. 7b shows the 
segmented slice color-coded to represent skin (cyan), 
adipose (red), fibroglandular (yellow), muscle (magenta), 
and lesion (blue).   

III. CONCLUSION 
The method presented here demonstrates a strategy for 

segmenting DBT images that are challenging due to out-of-
slice artifacts and inclusion of x-ray scatter.  The only user 
input required is the identification of the location of a 
possible lesion.  Segmentation and classification of tissue 
types is fully automated.  To date, the method has been 
applied to seven clinical datasets.  Visually, the lack of 
lesion distortion suggests that the proposed technique may 

 
Fig. 4. Three slices (x-y plane) extracted from the volume of interest 
(VOI) encapsulating the lesion:  a. top slice that is in contact with the 
compression paddle; b. slice that best represents the lesion; and c. 
bottom slice that is contact with the breast support.  (a-c) are prior to 
and (d-f) are after VOI normalization. 

 
Fig. 5. A slice (x-y plane) containing the lesion extracted from the 
VOI before (a), and after (b) background correction.  

 
Fig. 6. A slice (x-y plane) containing the lesion extracted from the 
VOI (a) after FCM-clustering based segmentation, (b) after area 
filtering to remove isolated segments, (c) after 3-D void filling, and, 
(d) final smooth mask.   
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be adaptable for initial image processing as part of a 
computer-aided detection or diagnosis technique.  We are 
pursuing additional refinements including improved 
estimation of skin layer thickness and determining filter 
parameters that are best suited for the task.  Quantitative 
validation such as verifying the estimated tumor volume and 
glandular fraction content, and suitability of the method to 
provide NIRS anatomic priors are subjects of ongoing 
investigations.      
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Fig. 7. a. Representative slice (x-y plane) from DBT reconstruction 
that prominently shows the lesion; b. segmented slice color-coded to 
represent skin (cyan), adipose (red), fibroglandular (yellow), muscle 
(magenta), and lesion (blue).   
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