
  

Abstract— Algebraic Reconstruction Technique (ART) is a 

widely employed method in computed tomography since it has 

certain advantages, such as allowing reconstruction of data 

with missing projections in some angle ranges, over other 

techniques such as Filtered Back Projection (FBP). Recently, a 

regularisation technique for ART, RegART, was introduced 

which provides greatly reduced noise levels. However, a serious 

drawback of both ART and RegART is the computational 

complexity of the methods. In this paper, we present a fast 

version of RegART, which makes use of nVidia’s CUDA 

technology, and show that this approach performs favourably 

compared to FBP. 

I. INTRODUCTION 

lgebraic reconstruction technique (ART) [1] of 

tomographic data is an iterative way of reconstructing  

object spatial structure from a set of X-ray transmission 

projections collected at different angles of object rotation. 

ART approaches have several key advantages over 

transform-based methods. They can be used with irregular 

sampling geometries, incomplete noisy data sets and may 

incorporate curved ray paths [2,3]. Also, the application of 

algebraic techniques allows for better quality of tomography 

reconstruction data. However, one main disadvantage of 

ART-based techniques is that they are computationally 

rather expensive in comparison to integral reconstruction 

methods.  

In [4], we introduced RegART, a regularised version of 

ART, which reduces the noise of reconstruction by 

introducing a spatial non-linear filtering stage between the 

iterations of the algorithm. 

In this paper, we present a fast version of RegART which 

makes use of nVidia’s CUDA technology for improved 

efficiency, and show that RegART performs favourably 

compared to Filtered Back Projection. Our system is 

developed and our experiments carried out at the A.V. 

Shubnikov Institute of Crystallography RAS [5]. Out of the 

several tomography data collection schemes [6], in our 

experiments the parallel scanning scheme (Fig.1) has been 

used; however RegART can be easily adapted to other 

scanning schemes. 
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II. ART AND REGART 

Assuming a Cartesian co-ordinate system to describe 

projection formation, the line equation for AB in Fig.1 is 

 

x cos + y sin =                         (1) 

 

Let f x, y( )  describe the linear attenuation coefficient. 

Then, the transmission function of the fine beam AB is 

 

I ,( ) = I0 ,( ) exp( dxdyf x, y( ) x cos + y sin( )),  

(2) 

where I0  is the intensity of the initial beam and  is the 

Dirac delta-function. 

Usually, a new function 

 

 p ,( ) = ln
I0 ,( )
I ,( )

 

 
  

 

 
                        (3) 

 

is introduced so that we get 

 

p ,( ) = dxdyf x, y( ) x cos + y sin( ) .         (4) 

 

which is known as the Radon transform of f x, y( ) . The 

parallel projection is a collection of fine beam integrals for a 

constant .  

For ART, a square grid is imposed on the image f x, y( ) . 
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Fig. 1. Parallel scanning scheme. 
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The function f x, y( )  is constant in each pixel, consequently 

we search the solution in the space of the piecewise constant 

functions. Let f i  denote a constant value in the i-th pixel 

and N be the total number of pixels. X-rays are lines running 

through the image plane (see Fig. 2), and we assume that the 

ray width is approximately equal to the pixel size. 

 
The intensity p j  is called a ray sum. The relation 

between p j  and   

 

f  is expressed as 

 

p j = f iwij , j = 1,...M
i=1

N

                        (5) 

 

where M is the total number of rays (in all projections) and 

wij  is the weighting factor that represents the contribution of 

the i-th pixel to the j-th ray sum. 

For large N and M there exist iterative methods to solve 

the equation system (5). These are based on the “method of 

projections” first proposed by Kaczmarz [7]. An image, 

presented by   

 

f , may be considered to be a single point in an 

N-dimensional space. Each of the linear equations of (1) 

defines a hyperplane. The unique solution to these equations 

is the intersection of all hyperplanes. 

Let   

 

f k  be the estimated solution at the k-th iteration. The 

iteration scheme is represented by 

 

 

f k+1 =
 

f k +
p j

 

f k ,
 

w j( )
 

w j ,
 

w j( )
 

w j .                 (6) 

 

Here  is the so-called relaxation parameter [8]. It can be 

shown [9] that the limits of cyclic sub-sequences generated 

by the method reduce to a weighted least squares solution of 

the system when the relaxation parameter approaches zero. 

This point minimises the sum of squares of Euclidean 

distances to the hyperplanes of the system. 

The initial estimate denoted by   

 

f 0 is assigned a value of 

zero, and it can be shown [10] that from any initial estimate 

the sequence generated by ART converges to a weighted 

least squares solution. The initial estimate is projected onto 

the hyperplane represented by the first equation in (6) to 

yield 
  

 

f 1
0
. The subscript here indicates how many 

hyperplanes are included in the   

 

f 0 correction process. After 

each projection to a hyperplane, the estimated image   

 

f 0 is 

updated. The first sub-iteration is finished once the 

correction over all hyperplanes has been performed.  

One can note that w j 0,1{ }  for = 0 and moreover 

that equation (5) may be rewritten as 

 

p j = f ij
i=1

n

,                                    (7) 

 

where f ij  denotes the i-th pixel in the j-th row and n is the 

size of the image. This allows us to use the following 

algorithm of projection calculation: for each rotation angle 

 rotate image f ij  by this angle (e.g., using a bilinear 

approximation algorithm). After that apply equation (7) to 

obtain the projection. 

Many projection access schemes have been discussed in 

the literature [11]. To minimise the influence of two 

neighbouring hyperplanes on each other we used the 

following scheme: 

 

 

p 1, 1( ), p 1 +
2
, 1

 

 
 

 

 
 , p 1, 2( ), p 1 +

2
, 2
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p 1, N
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2
, N

2

 

 
 

 

 
 ,...p M +
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    (8) 

 

Because the projections are usually noisy, the intersection of 

the hyperplanes is not a point in the N-dimensional space but 

a polyhedron. Each iteration projects the estimated solution 

to a polyhedron hull area. On the other hand, the solution 

sought for belongs to the image class sub-space. The size, 

shape and position of the sub-space depend on the accuracy 

of the image description (accuracy of the image model). The 

image sub-space and the polygon can intersect or be close to 

each other. A regularisation operator brings the estimated 

solution from the polygon wall area to the image sub-space 

[12]. The space of piecewise constant functions is well 

suited for the description of tomography images. However, it 

is rather difficult to construct a projector which brings an 

estimated solution to this image sub-space. We have taken 

the space of piecewise smooth functions as the image space. 

That is, if the function belongs to this space it will belong to 

the same space after the median operator was implemented. 

Then the median filter operator [13, 4] can be used as the 

 
 

Fig. 2. Parallel scanning scheme (discrete representation). 
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projector from the polygon wall area to the image sub-space. 

We apply median filtering as the second sub-iteration. It is 

known that the median filter reduces speckle noise and salt 

and pepper noise, while its edge-preserving nature makes it 

useful in cases where edge blurring is undesirable. It should 

be noted that the type of projector depends on the chosen 

image sub-space and in the general case can be of any kind. 

The non-negativity constraint is reinforced when instead of 

f < 0 we set f = 0.  

One iteration is completed once the full set of 

measurements has been processed. In the next iteration,   

 

f k  

is projected onto the hyperplane represented by the first 

equation in (6), and successively onto the rest of the 

hyperplanes in (6). Then, filtering is applied and so on until 

the last iteration. 

In the last iteration, all images 
  

 

f 1
last ,...

 

f N*M
last

 are saved. 

The final step of the algorithm is the averaging over these 

images to exclude the influence of the last hyperplane 

projection. 

III. REGART ON CUDA 

The main bottleneck in the implementation of the 

RegART algorithm is image rotation which is performed n  

times during each iteration. We therefore employ nVidia’s 

CUDA technology [14] to improve the performance of the 

method. CUDA (as well as ATI Stream and similar 

technologies) is a development kit that allows a large part of 

computationally intensive calculations to be propagated to a 

graphical processor (GPU). In our approach, we employ a 

rotation technique involving 2D texture fetching [15] using 

CUDA to reduce memory bandwidth. The bilinear rotation 

algorithm includes two almost independent stages for each 

pixel of the destination image: calculation of its exact co-

ordinates on the source image, and bilinear interpolation of 

the value around this point. The used CUDA texture fetching 

mechanism allows implementation of the second stage on 

hardware level completely transparent for programmer. 

Moreover, texture memory is cached whereas general read-

write memory is not. 

IV. PERFORMANCE COMPARISON 

In Table 1 we present a performance comparison for 

image rotation with CUDA and a plain C implementation, 

run on a PC with 2 AMD Opteron 275, 8GB memory, 

nVidia GTX 285 with 240 cores, and Ubuntu Linux 9.10 64-

bit as operating system. All computations were performed 

using double precision floating point numbers. 

As the typical linear size of our tomography images is 

about 1000 pixels, we can expect a speed improvement of a 

factor of about 6. However, since the other steps of the 

algorithm (iterative modification and filtering of the image) 

still use the central processor, requiring memory transfers 

between CPU and GPU on each iteration, the overall speed-

up is somewhat lower than those listed in the table (about 3). 

 

 
TABLE I 

SPEEDUP RESULTS ACHIEVED USING CUDA 

 

Image size CUDA / C speed-up 

200x200 2.3 

300x300 2.9 

500x500 3.9 

800x800 5.6 

1000x1000 6.0 

1500x1500 6.6 

 

V. RECONSTRUCTION QUALITY COMPARISON 

 A reconstruction quality comparison between RegART 

and Filtered Back Projection (FBP) [16] was performed 

using the Shepp-Logan phantom which is the de-facto 

standard in computed tomography. Projections were 

modelled using normally distributed noise with a half-width 

about 1% of maximal signal (see Fig. 3). A 3x3 median filter 

was used as regularisation transform in RegART. 

 
Fig.3. Simulated set of projections. 72 projection angles.  

 
In Fig. 4, one scanline of the reconstructed phantome is 

presented. The dotted line is the result of the FBP method, 

the dashed line that of RegART, whereas the solid line 

represents the ground truth. It is easy to see that RegART is 

superior to FBP, showing far fewer fluctuations of the 

absorbtion coefficent. 

 
Fig.4. Reconstruction results. 
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VI. CONCLUSIONS 

Speeding up of the RegART algorithm allows its use in 

real tomography hardware, which are currently often based 

on  FBP, to provide less noisy images. However, to further 

compete with FBP in terms of computational efficiency, it 

ideally should be faster still. In order to achieve that, we are 

planning to optimise the speed of this procedure by 

incorporating a fast Hough transform calculation [17] which 

will reduce the complexity from O(n3) using rotations to 

O(n2logn). 
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