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Abstract— Radiation therapy plays an important and effec-
tive role in the treatment of cancer. A main goal in radiation
therapy is to deliver high radiation doses to the perceived
tumors while minimizing radiation to surrounding normal
tissues. Manual delineation of tumors and organs-at-risk(OARs)
on three-dimensional computed tomography (3D-CT) is both
a time-consuming and labor intensive task, and there maybe
variability between manual delineations by different radiation
oncologists. In this paper, we present a semi-supervised method
to segment the contours of organs represented by piecewise
linear segments connected with a small number of points given
the user’s input in one or more slices as an approximate
initialization. This method detects ridge samples from the kernel
interpolation of the edge map and approximates the shape of
organs using piecewise linear segments among those sample
points based on the principal curve score. Results are provided
in two 3D-CT scans. Evaluation of the efficacy of our semi-
automatic segmentation method is based on the overlapping
ratio between the manually delineated contours and the semi-
automatic segmented contours represented by a small number
of points. The preserved points can be as low as 10 percent
of the initial manual points, and the Dice Coefficients are
approximately 0.93 for lung segmentation.

I. INTRODUCTION

Automatic and semi-automatic segmentation of all regions
of interest (ROIs) have been an intense research topic. A
wide variety of medical image segmentation techniques have
been developed. Most are based on the gray intensity of
each pixel, such as thresholding [8], region growing, split
and merge [4], edge detection [1]. However, the accuracy
of the segmentation is critically dependent on the quality
of the image. If the image is noisy or has low resolution
or overlapping gray-level range between different organs,
gray levels alone may not be sufficient to segment the ROIs
accurately. Therefore, these approaches are often combined
with other segmentation algorithms.

Deformable models are curves or surfaces deformed under
the influence of external and internal energy within the
image, and are widely used in the segmentation in biomedical
applications. Huang [5] proposed a semi-automatic CT seg-
mentation in tumors and organs using optic flow to obtain the
deformation matrix. A few points were manually drawn on a
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CT slice and fourier interpolated to form the initial contours.
Initial contours were then deformed into the boundary of
objects in the adjacent CT slices based on the deformation
matrix until tumors and organs segmented in all slices. In
general, deformable models for image segmentation are slow
and computationally expensive due to the time necessary to
conduct parameter optimization.

The non-parametric technique, mean shift algorithm [2],
has been developed for clustering and segmentation prob-
lems. Recently, using mean shift update in the constrained
normal subspace to find the locally defined principal
curve/surface is proposed by Erdogmus and Ozertem [3],
[6]. Principal curves can represent an object boundary by
finding the ridges of the underlying distribution. In our pre-
vious work, a kernel density estimate (KDE)-based principal
surface algorithm was proposed for volumetric segmentation
and contour propagation of tumors or organs between 3D
phases of a four-dimensional computed tomography (4D-CT)
dataset without performing full blown 3D-3D deformation
registration [9].

Clinical practitioners are generally dissatisfied with the
performance of existing technologies. It is desirable to de-
velop an interactive segmentation tool that fuses inputs from
the expert users with features in images to speed up the
manual delineation process. Therefore, the aim of this paper
is to approximate the contours of objects formed a finite
number of joint fragments connected with a small number
of points incorporating the knowledge from the users and the
edge information from the image.

In this paper, we propose a semi-automatic method to
segment organs using the principal curve algorithm. The
boundaries of the organs are segmented and propagated by
converging initial contours to the ridges of the underlying
edge distribution based on the locally defined principal curve
algorithm. The boundaries are then approximated based on
down sampling the points on the boundaries using the defined
principal curve score. This method keeps the users interactive
in the segmentation procedure by incorporating a few slices
delineated by the users in the reference slices. The segmented
contours are formed by a finite number of joint fragments
connected with a small number of points. The boundary of
organs can be accurately made up of a finite number of linear
segments connected with only a small number of points,
at the lowest 10 percent of the original manual contour
points preserved. Therefore, the computational complexity
and workload for delineating contours are reduced.
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Fig. 1. Flowchart of the method

II. METHODOLOGY
Fig. 1 illustrates the flowchart of our method. Labeled

contour points from one or more given slices are projected
to the principal curve of the kernel interpolation of the edge
distribution. If there exists sparse areas in the output of
the principal curve projection, points are added in these
areas to do the projection repeatedly until a satisfactory
number of samples are obtained from the boundary. Those
projected principal curve points on the given slices are then
propagated to slices above and below the given slices. A
principal curve score for each pair of projected points on
all the slices is computed. This score indicates the similarity
and consistency of the projected principal curve samples.
Using one of the projected points as the starting point, the
next point connecting to the starting point is the furthest
one in Euclidean distance with the principal curve score
above a threshold. In this case, the boundary of objects can
be approximated using piecewise linear segments connected
with a small number of down sampled projected points while
with the shape accuracy preserved.

A. Principal Curve Projection
Locally defined principal curves and surfaces presented

by Erdogmus and Ozertem [3], [6], [7] are obtained utiliz-
ing local first and second order derivatives of the at least
twice differentiable underlying density function. Here, the
underlying density function is the kernel interpolation of the
edge distribution over space, and points of the principal curve
are on the ridge of this edge distribution. The gradient and
hessian of the kernel interpolation are then calculated. When
projecting the data from n to d dimensions, a point is on the
d dimensional principal curve iff the local gradient is in the
span of d eigenvectors of the local covariance inverse and
the corresponding (n − d) eigenvalues are positive. If the
corresponding (n− d) eigenvalues are negative, the point is
on the d dimensional minor curve. Details of deriving the
locally defined principal curves and surfaces can be found
in [7].

B. Principal Curve Score
The outputs of the principal curve projection are the

sampling points on the ridge of kernel interpolation of the

edge distribution. In order to down sample the points and
connect these down sampled points to represent the shape of
organs, we define a pairwise principal curve score to check
whether or not two points belong to the same ridge. Nearby
samples in a neighborhood can then be separated based on
their underlying ridges for the purpose of downsampling.

If ℘(a,b) is the pairwise principal curve score between
points a and b, then the line integral of the scalar valued
function,γ(.), from a to b evaluated on the curve l(t) and
the arc length of the curve L, is

℘(a, b) =

∫ 1

0
γ(l(t))[l̇T (t)l̇(t)]

1
2 dt

L(a,b)

Where γ(l(t)) is the stopping measure of the projection
iteration. If it reaches 0, the point is on the principal curve.
It is positive around the principal curve regions and negative
around the minor curve. γ(l(t)) is bounded between [-1,1].
Here we parameterize l(t) = a+t(b−a) as a line with l(0) =
a, l(1) = b and l̇(t) = (b − a), and L =

∫ 1

0
[l̇T (t)l̇(t)]

1
2 dt.

If two points are on the same curve, then the principal curve
score between these two points is relatively low. Conversely,
if two points are on different curves, then the score is
relatively high.

Since γ(l(t)) will attain positive values in a convex region
around the principal curve and negative values around the
minor curves, the principal curve score is only calculated
between two points where the connection of these two points
lies inside a local convex region around the ridge such that

℘̄(a,b) =
{
℘(a,b) if ∀t ∈ [0, 1]λd+1,...,n(l(t)) > 0
∞ otherwise

C. Sampling on Principal Curve

Once the local connectivities between two projected prin-
cipal curve points are all obtained, principal curve points
can be down sampled to approximate the shape with piece-
wise linear lines by varying the threshold, thr. The de-
viation from the original curve is defined as ℘̄∗(a,b) =
max(℘̄(a,b), ℘̄(b,a)). Given the threshold, thr, the pre-
defined condition, ℘̄∗(a,b) < thr, the projected principal
curve points, p1,p2, ...,pN , and a starting reference point
pref , where ref is the index, Table 1 shows the procedure
of down sampling points on the principal curves.

TABLE I
DOWN SAMPLING ON THE PRINCIPAL CURVES

1) Select a starting reference point pref

2) Find the furthest point pref+ on the same ridge as pref in the con-
secutively increasing index side of ref with ℘̄∗(pref ,pref+) <
thr, and the furthest point pref− on the same ridge as
pref in the consecutively decreasing index side of ref with
℘̄∗(pref ,pref−) < thr.

3) Starting from pref+, repeat step 2 in the consecutively increasing
index side until the largest index point satisfying the pre-defined
condition is achieved

4) Starting from pref−, repeat step 2 in the consecutively decreasing
index side until the smallest index point satisfying the pre-defined
condition is achieved
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III. EXPERIMENTS

We test the proposed algorithm on 2 patient lung 3D-CT
scans for lung segmentation and compare with the manually
delineated contours. All ROIs are manually delineated by
physicians as reference for evaluation. The segmentation
performance are evaluated qualitatively and quantitatively.

A. Principal Curve Projection for Lung Segmentation

Fig. 2 shows the results of the principal curve projections
on one slice. The blue lines are the edges, the red lines are
the projected principal curves, and the yellow lines are the
manual contours. The projected principal curve is faithfully
able to recapitulate manually drawn lung boundaries.

Fig. 2. The principal curve projection to the lung boundary: edge points
(blue), the projected principal curve (red), the manual contours (yellow)

The initial contours may not converge to the low edge
density regions or the boundary concavities if the kernel
width is too small or the distance of the initial curve is far
from the ridges. Therefore, if the Euclidean distance between
adjacent points is above a threshold, then additional points
are generated between these two points to be projected to
the ridges again. This interpolation procedure is repeated
iteratively until the distance is below the threshold. Fig.
3 shows the effect of up sampling points on the ridges if
the output of the principal curve projection is not satisfied.
The yellow lines are the manually delineated contours, the
blue lines are the edge, the green lines are the output of
the principal curve projection, and the red lines are the
up sampled points along the boundary concavities. This
greatly improves the conformity to the object boundary and
the overlapping ratio between the manual contours and our
segmented contours.

Fig. 3. Up sampling points to the ridges of the object boundaries: edge
points (blue), principal curve projection (green), up sampled points (red)

B. Propagation of Contours

Since there are no significant shape and position changes
of organs between adjacent slices, the output of the automatic
segmentation from one slice provides an ideal initialization
for the propagation of the contours to the adjacent slices. If
repeatedly propagating contours between neighboring slices
through the entire slices of a 3D-CT scan, a complete set of
contours will be segmented. Fig. 4 shows the propagation of
contours between slices. The slice in the middle is the refer-
ence slice, and the contours are manually delineated, yellow
lines. The manual contours are used as an initialization to
segment lung contours in the reference slice. The output of
the automatic segmentation, red lines in the reference slice
is used as an initialization for the propagation of contours
to the slices above and below. The images at the left side
are the slices below the reference slice, and the images at
the right side are the slices above the reference slice. White
lines are the output of the automatic segmentation from the
previous slice and also the initial contours for the current
slice.

Fig. 4. Propagation of contours between slices: manual contours (yellow),
the projected principal curves (red), initial contours and the output of the
segmentation from the previous slice (white)

C. Down sampling of the Principal Curves

Fig.5 shows the results of down sampled points repre-
senting the lung shape. More points are preserved at high
curvature regions and few points are retained at the smooth
areas. The promising results demonstrate the feasibility of
representing the shape using only a small number of pre-
served points.

Fig. 6 visualizes the segmentation results by those pre-
served points in transversal, sagittal, and coronal views, as
well as 3D reconstructed lung surfaces in ITK-SNAP. This
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Fig. 5. down sampling points on the ridges of the object boundaries: edge
points (blue), principal curve projection (red), manual contours (yellow),
down sampled points (green circle) with black lines connecting them

results show the accuracy and robustness of using a small
number of points to represent the shape model.

Fig. 6. Segmentation results shown in red shades viewed in Transversal,
sagittal, coronal views and 3D reconstructed lung surfaces

D. Quantitative Evaluation

We use the Dice coefficient to quantify the overlap be-
tween the manually drawn contours and those determined
by our automatically segmented contours. d = 2 |A∩B|

|A|+|B| . A
and B indicate the volume of objects. The output of our
algorithm is the 2D coordinates of the object boundaries. A
binary 3D volume mask based on the 2D coordinates of the
object boundaries from all the slices should first be created
in order to calculate the Dice coefficients.

Fig. 7 displays the dice coefficient between the contours
represented by the down sampled principal curve points and
the manual contours and the fraction of preserved points
to the original principal curve points by varying the values
of compression parameters with different patients. The Dice
coefficients are around 0.94 and 0.93 for patient 1 and 2
respectively. The preserved number of points can be as low
as 10 percent of the manual contours points.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a semi-supervised segmentation
algorithm to represent contours of organs with a small
number of points given a few slices by the clinicians. The
algorithm identifies principal curve samples from the ridge
of the kernel interpolation of the edge distribution and then
down samples the ridge samples by checking whether or
not the samples belong to the same ridge based on the

Fig. 7. Dice coefficient and the fraction of preserved points by varying
thr values with different patients

pairwise principal curve score. This method is not computa-
tionally expensive and time-consuming and does not require
extensive parameter optimization. This method speeds up
manual delineation and allows clinicians to intervene in the
initialization and have control over the solutions during the
process. The proposed method is tested on 2 patient 3D-
CT datasets. Quantitative and qualitative experimental results
demonstrate that our semi-automatic segmentation method
produces acceptable segmentation accuracy. The algorithm
generally performs well on the lungs because of the clear
boundaries detected. However, when tumors are on the
walls of organs or have similar intensity and texture as the
surrounding soft tissues, or if some organs have low contrast
against the background, the edge of objects can be occluded
or hard to discern. In the future, we will incorporate prior
shape information to make the results more accurate and
robust in case of occluded edges. We will also incorporate
different delineation initializations from multiple observers,
and evaluate our algorithm in more datasets and other organs,
such as the heart, the kidney, the liver, and the prostate. Our
proposed method still needs human interaction. In the future,
we will try to make the algorithm totally automatic, such as
initializing the label contour from a prior shape as the mean
shape of the lung from previous studies or a human atlas
model after proper co-registration procedure.

REFERENCES

[1] J. Canny, A computational approach to edge detection, IEEE Trans.
Pattern Anal. Mach. Intell 8 (1986), 679–698.

[2] Y. Cheng, Mean shift, mode seeking, and clustering, IEEE Transactions
on Pattern Analysis and Machine Intelligence 17 (1993), 790–799.

[3] D. Erdogmus and U. Ozertem, Self-consistent locally defined principal
surfaces, IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2007) (2007), II–549–II–552.

[4] Rafael C. Gonzalez and Richard E. Woods, Digital image processing
(second edition), Prentice Hall (2002).

[5] Tzung-Chi Huang, G. Zhang, T. Guerrero, G. Starkschall, Kan-Ping
Lin, and K. Forster, Semi-automatic ct segmentation using optic flow
and fourier interpolation techniques, Computer Methods and Programs
in Biomedicine 84.

[6] U. Ozertem and D. Erdogmus, Local conditions for critical and
principal manifolds, Proceedings of ICASSP’08 (2008), 1893–1896.

[7] , Locally defined principal curves and surfaces, Journal of
Machine Learning Rsearch (2010), 1–48.

[8] J.S. Weszka, A survey of thresholding techniques, Computer Graphics
and Image Processing 7 (1978), 259–265.

[9] S. You, E. Ataer-Cansizoglu, J. Tanyi, J. Kalpathy-Cramer, and D. Er-
dogmus, A novel application of principal surfaces to segmentation in
4D-CT for radiation treatment planning, 2010 Ninth IEEE International
Conference on Machine Learning and Applications (2010), 758–763.

6223


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

