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Abstract— Optic disc segmentation from retinal fundus image
is a fundamental but important step for automatic glaucoma
diagnosis. In this paper, an optic disc segmentation method
is proposed based on peripapillary atrophy elimination. The
elimination is done through edge filtering, constraint elliptical
Hough transform and peripapillary atrophy detection. With
the elimination, edges that are likely from non-disc structures
especially peripapillary atrophy are excluded to make the seg-

mentation more accurate. The proposed method has been tested
in a database of 650 images with disc boundaries marked by
trained professionals manually. The experimental results by the
proposed method show average m1, m2 and mV D of 10.0%,
7.4% and 4.9% respectively. It can be used to compute cup to
disc ratio as well as other features for application in automatic
glaucoma diagnosis systems.

I. INTRODUCTION

In the past years, localization of the optic disc (OD) from

retinal fundus images has been investigated extensively [1][2].

The main task of these algorithms is to find the location of

OD so that it wound not be confounded with large exudative

lesions. For some applications such as automatic glaucoma

diagnosis from retinal fundus images, automatic segmentation

of OD is needed. The objective of OD segmentation is to

find its boundary. Fig. 1 shows two examples, where the

lines in green are the ground truth OD boundaries to be

determined. There are several reasons to get OD boundary

precisely for glaucoma diagnosis application. Firstly, vertical

disc diameter is the denominator to compute the vertical cup

to disc ratio (CDR) [3], which is a critical factor used by many

ophthalmologists for the diagnosis; secondly, the size of OD

itself is a factor in the diagnosis [4]; thirdly, it is necessary to

have the OD boundary to determine compliance of ISNT and

optic rim thinning [5]. Thus, automatic OD segmentation is a

fundamental but very important step for the diagnosis.

Several approaches have been proposed for OD segmen-

tation. Deformable model is used in [6][7]. However, it is

sensitive to poor initialization. In [8], level set is used. The

approach is often affected by a large number of blood vessels

entering the disc as well as peripapillary atrophy (PPA) that

slows down the evolution of the level set to reach the disc

boundary. In [9], circular Hough transform is used. Hough

transform using all edge pixels detected by traditional edge
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Fig. 1. Green: ground truth OD boundary, Blue: detected OD boundary
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Fig. 2. Flow Chart of the Method

detection algorithms such as ‘Sobel’ [10] or ‘Canny’ [11]

often produces un-desired results. One common limitation of

these algorithms is that the presence of PPA has not been

considered and the resultant segmentation often mistakes PPA

as part of OD. For example, the lines in blue are often

detected as OD boundaries in Fig. 1 with PPA being included.

Such a result often leads to an under-estimated CDR and/or

inaccurate ISNT compliance. Since PPA appears often among

glaucoma patients, excluding PPA area from OD, i.e., PPA

elimination, is necessary to measure OD diameters for clinical

use [12]. To the best of our knowledge, existing automatic OD

segmentation algorithms did not consider PPA. Besides PPA,

blood vessels and even some of optic cups may affect the OD

segmentation sometimes and are considered as well in this

paper. The paper is organized as follows. In Section I, we

have given an introduction of the background and motivation

for the method. In Section II, we introduce the methods in

details. Section III shows the experimental results, followed

by the conclusions in the last section.

II. METHODOLOGY

In this paper, OD is approximated as ellipse as in [8]. The

flow chart of the segmentation is summarized in Fig. 2. The

PPA elimination is conducted in three parts: an edge filtering,

a constraint elliptical Hough transform, and a β-PPA detection.

A. Region of Interest and Edge Detection

Region of interest (ROI) extraction is similar to OD local-

ization. It can be done by localization algorithms as in [1][2],
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however the fringe removal based method in [13] is used to

get the ROI image I in this paper because of its simplicity.

Arbitrarily including all edges from I is unnecessary. We

propose to extract edges as follows. First, a low pass filter

is applied on the image to smooth away noise. In this paper,

a 2D mean filter is used to get the smoothed image Ĩ . Then

for each row profile L from Ĩ , compute its first derivative L′.

The local maximums and minimums of L ′ are the possible

horizontal edges from OD boundary in this row. Inspired by

the observation that the pixel values increase when entering the

disc and decrease when exiting, only local maximums from the

left half of each row and local minimums from right half are

used. Similarly, local maximums and minimums from column

profiles are obtained to get vertical edges as well to form

candidate disc boundaries.

B. Edge filtering

The first PPA elimination is through edge filtering (EF).

There are two types of PPA: α and β. α-PPA represents pig-

mentary and structural irregularity of retinal pigment epithelial

(RPE) cells. β-PPA represents a complete loss of the RPE

cells. α-PPA is normally darker than OD while the OD is

the brightest part within the ROI. Excluding edges from α-

PPA can be done by comparing the ROI with a threshold TD

followed by a morphological closing processing, i.e., E =
imdilate(D), where imdilate(·) denotes a morphological

dilation, D is a binary matrix computed by:

D(x, y) =

{

1 I(x, y) > TD

0 otherwise
(1)

In this paper, TD is initialized to be the mean intensity in the

ROI and increased until the number of pixels brighter than

TD is no larger than 20% of total number of pixels. The value

20% is empirically determined based on typical OD size. A

candidate edge (x, y) with E(x, y) = 0 would be excluded.

The dilation is necessary to preserving OD boundary pixels

which often have relatively lower pixel intensity. Excluding

edges from β-PPA is much more difficult as it has a color

similar to OD. In this paper, we propose to apply β-PPA

detection followed by edge removal later.

Besides PPA, blood vessels might affect the segmentation as

well. Across the blood vessels, the pixel intensity decreases

first before increasing again shortly. Thus, the blood vessel

corresponds to one local minimum followed by one local

maximum in the same row/column. In this paper, we exclude

every pair where a local minimum is followed by a local

maximum in its nearby within the same row/column. In some

occasional case, optic cup with distinctive boundary affect the

OD segmentation as well. However, in such a scenario, the

brightest part is close to 255. Thus, edges close to pixels with

highest intensity are excluded.

C. Constrained Elliptical Hough Transform

OD is approximately an ellipse with parametric representa-

tion given by:

x(t) = xc + a cos t cosφ − b sin t sinφ
y(t) = yc + a cos t sin φ + b sin t cosφ

, (2)

where t ∈ [0, 2π], (xc, yc) is row and column coordinate

of the center, a and b are the vertical and horizontal radius

respectively, and φ is the rotation angle of the ellipse. OD has a

slightly oval shape with vertical diameter being about 7%-10%

larger than horizontal one [14]. Because of crescent shape [15]

of PPA (both α and β type) appears on nasal and/or temporal

side of OD, PPA together with OD often form an ellipse wider

in horizontal as in Fig. 1(a). Thus, the second PPA elimination

is done by a constrained elliptical Hough transform (CEHT)

summarized as follows:

1) Set parameter (a, b, φ) for ellipse.

2) For each edge point (xe, ye), draw an ellipse centered

at (xe, ye) with (a, b, φ) and increment all coordinates

that the perimeter of the ellipse passes through in the

accumulator A corresponding to the parameters.

3) Update (a, b, φ) and repeat step 2 for all (a, b, φ) from

the parameter space.

4) Find the maximum value in A to get an ellipse centered

at (x1, y1) and corresponding parameters (a1, b1, φ1).
5) If b1/a1 > γ, then find the maximum value in A subject

to b/a ≤ γ to get a second ellipse centered at (x2, y2).
6) Determine the OD boundary as the second ellipse if

A(x2, y2)/A(x1, y1) > TA, otherwise, the first one.

The idea is that if b1/a1 > γ, there is a higher chance that

the first detected ellipse include some of PPA. Thus we would

further check if there is another slightly weaker ellipse with

b/a ≤ γ. If so, the second one is more likely to be the disc

boundary with reduced chance to mistake PPA as part of OD.

D. β-PPA Detection

Although the CEHT helps avoid some PPAs via embedding

prior knowledge of the OD shape in the detection, it does not

work if b1/a1 ≤ γ. Such a case happens often when β-PPA

with moderate size or larger appears on inferior and/or superior

as in Fig. 1(b) without making b1/a1 > γ. Thus, the third PPA

elimination is implemented by β-PPA detection. Since the PPA

affects the segmentation by being mistaken as part of OD, a

ring area, as shown in Fig. 3, is empirically determined from

the detected disc boundary (line in blue) for further analysis.

Inspired by the texture within β-PPA compared with OD, we

extract all local maximums and minimums from smoothed row

and column profiles within the ring, similar to that in Section

II-A. To be distinguishable from the edge points in Section II-

A, they are named as feature points. In each quadrant Q i,

the numbers of feature points from rows and columns are

counted separately. When the numbers of feature points exceed

a certain level in the quadrant, β-PPA is considered as present

in Qi. The threshold level used is learned by comparing the

cases with β-PPA vs. the cases without. Then the edge points

along the detected disc boundary from Q i are removed. The

CEHT would be re-applied to get a new disc boundary.

E. Ellipse Fitting Correction

In some cases, the ellipse fitting over-fits the OD with the

resultant ellipse boundary lying away from the true boundary

in some segment as shown in Fig. 4. To improve the segmen-

tation, we search on two sides of the current detected disc
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Fig. 3. ROI ring for β-PPA analysis
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Fig. 4. Ellipse Correction: edge points in red and corresponding disc
boundary in blue

boundary in quadrant Qi, i = 1, 2, 3, 4. The search region

is from each quadrant and divided into several overlapping

windows, as illustrated in Fig. 4 for Q2. When the number of

edge points in S0 is below certain level, we search in the region

nearby for the nearest window Sj = Wj∪Wj−1, j = −2, ..., 2,

with more edge points. If such a new window is found, adjust

the ellipse parameters such that the new disc boundary passing

through the new window.

III. EXPERIMENTAL RESULTS

A. ORIGA light Database and Evaluation Metrics

The ORIGA light [16] database which contains 650 im-

ages is used in this paper. PPA appears in more than 200

images. The OD boundaries have been manually marked by

trained professionals. Several metrics are commonly used

to evaluate segmentation accuracy: overlapping error m 1 =
(1 −

ODseg∩ODref

ODseg∪ODref
), relative absolute area diffeence m2 =

|ODseg−ODref |
ODref

, where ODseg and ODref denote the seg-

mented and the ground truth disc respectively. In addition,

accuracy of vertical disc diameter, the denominator to compute

CDR, is computed as: mV D =
|V Dseg−V Dref |

V Dref
, where V Dseg

and V Dref represent the vertical diameter of the segmented

disc and corresponding ground truth respectively. A lower

score indicates a better performance with 0 indicates perfect

segmentation in these metrics.

B. Results

We first show several examples of the segmentation results

together with ground truth to highlight the benefit of EF.

In Fig. 5, the red and blue lines are the results with and

without EF and the green lines are the ground truth. For images

without PPA such as Fig. 5(a), both results are close to the

ground truth. For images with PPA as shown in Fig. 5(b)-

Fig. 5(g), the method without EF is often trapped by the PPA

boundary while the proposed method finds the disc boundary

more accurately. Fig. 5(h) is an example where both methods

fail to find the disc boundary accurately due to low contrast

disc boundary. In CEHT, γ is set to be 0.95, slightly larger

Method m1 m2 mV D
Sobel+CHT 26.1%±24.5% 22.8%±33.1% 11.2%±12.0%

Sobel+EHT 25.2%±24.3% 17.7%±20.9% 8.7%±9.3%

Level Set 23.1%±23.4% 29.9%± 49.1% 15.6%±23.0%

Before PPA detection 13.0%±9.2% 11.9%±13.1% 6.0%±6.1%

Proposed 10.0%±8.5% 7.4%±10.6% 4.9%±5.9%

TABLE I

MEAN ± STANDARD DEVIATION OF THE METRICS FROM 650 IMAGES BY

VARIOUS SEGMENTATION METHODS

than typical ratio of horizontal diameter to vertical diameter.

TA is set to be 0.9, slightly lower than the ratio of the

perimeter of the ground truth OD to that of the strongest ellipse

from images with mild PPA. Fig. 6 shows some images for

comparison of the results with and without the post-processing.

The first row shows the benefit with β-PPA detection. The

lines in magenta and cyan are the results with and without β-

PPA detection. The second row shows the benefit from ellipse

fitting correction. The red lines show the final results. From the

comparison, we can see post-processing improve the results.

A quantitative comparison with three other methods is also

given. The first method uses Sobel edge detection combined

with circular Hough transform as in [9]. In the second method,

circular Hough transform is replaced with elliptical Hough

transform. The third is the level-set approach [8]. Besides

the above methods, we also show the results before β-PPA

detection. Table I shows the means and standard deviations

of the evaluation metrics m1, m2, and mV D based on the

performance of the 650 images. Fig. 7 shows the metric values

for each image by various methods, sorted from least to most.

From the comparison, it can be concluded that the proposed

method outperform the other three methods.

IV. CONCLUSIONS

Automatic OD segmentation is a fundamental but necessary

step for developing automatic glaucoma diagnosis systems.

In this paper, we propose a method for automatic OD seg-

mentation. Different from previous methods, PPA has been

considered through EF, CEHT, and β-PPA detection in the

post-processing for the first time. With the PPA elimination,

the proposed method outperforms three other methods with a

great reduction of average overlapping errors. It is beneficial

to compute CDR as well as other features more accurately and

thus important for automatic glaucoma diagnosis. However, it

still replies on a good segmentation of optic cup to evaluate

quantitatively how the disc segmentation improves the auto-

matic glaucoma diagnosis, which would be our future work.
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Fig. 5. Sample results (Blue: without EF, Red: with EF, Green: ground truth)

Fig. 6. Sample results (Cyan: before β-PPA detection, Magenta: after β-PPA detection, Red: with ellipse correction, Green: ground truth)
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