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Abstract— Age related Macular Degeneration (AMD) is a
disease of the retina associated with aging. AMD progression
in patients is characterized by drusen, pigmentation changes,
and geographic atrophy, which can be seen using fundus
imagery. The level of AMD is characterized by standard scaling
methods, which can be somewhat subjective in practice. In
this work we propose a statistical image processing approach
to segment drusen with the ultimate goal of characterizing
the AMD progression in a data set of longitudinal images.
The method characterizes retinal structures with a statistical
model of the colors in the retina image. When comparing the
segmentation results of the method between longitudinal images
with known AMD progression and those without, the method
detects progression in our longitudinal data set with an area
under the receiver operating characteristics curve of 0.99.

I. INTRODUCTION
In the United States, more than 25 million Americans are

estimated to have diabetes, and the number of adults with
the disease is projected to exceed 110 million by the year
2050 [1]. Worldwide, diabetes is also a growing problem
and the need for broad-based inexpensive screening of the
eyes of diabetics cannot be met by the current practice
of screening by ophthalmologists. Automated retinal image
processing research thus has become a leading topic of
research in recent years as a possible means of combating
this public health problem [2], [3], [4], [5]. However, other
retina diseases are also benefiting from research in this area.
In this work we consider age-related macular degeneration
(AMD) [6] and the characterization of features of AMD
through image segmentation. AMD is a chronic, progressive
disease that is the leading cause of vision loss in aging
patients. For the patient, the disease causes central vision
blurring, distortion, and vision impairment, often to the level
of legal blindness. There are two major types of AMD termed
wet, or neovascular, and dry, or atrophic. The former consists
of the growth of fragile new blood vessels, which often leak
fluid, causing the macula to swell and leading to scarring and
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TABLE I
AREDS AMD SCALE

Category Description
1 Less than 5 small (i.e., < 63µm) drusen

2 Extensive small drusen, or at least one intermediate (i.e.,
< 125µm) sized or pigment abnormalities

3
Extensive intermediate sized drusen; at least one large
(i.e., > 125µm) druse; non-central GA; or any combi-
nation of these

4
No advanced AMD (GA in center of fovea or choroidal
neovascular membrane) in study eye, but advanced
AMD in fellow eye

TABLE II
BRESSLER AMD SCALE

Phenomena Points
One or more large drusen > 125µm 1
Multiple intermediate drusen and no large drusen 0.5
Pigmentation changes 1
Central geographic atrophy 2
Neovascular AMD 2

vision loss. In the more common dry AMD, the effects are
more subtle as the cells of the sensory retina degenerate over
time. The hallmark manifestation of AMD is the formation
of soft drusen, fuzzy yellowish deposits beneath the retina,
which may increase over time as the disease progresses.
As dry AMD progresses, visible pigmentary changes in the
fundus may occur as retinal pigment epithelial tissue beneath
the retina, which is critical for normal retinal function, is lost.
Later effects include Geographic Atrophy (GA), which is a
distinct, nummular area of retina pigmentary atrophy. Two
suggested standards for categorization of AMD with respect
to retina features are summarized in Tables I and II [6].
The first, from the Age-Related Eye Disease Study (AREDS)
uses a four-category scale for AMD, based on the presence
or absence of key phenomena. The second assigns points,
based on the presence of these features [7] in each eye, and
the total points from both eyes are added. Scores of 1, 2, 3,
and 4 are assigned AMD risks of 3%, 12%, 25%, and 50%.

In the medical image processing literature, drusen detec-
tion is a subject of interest, although it generally has not
received the attention of other pathological features of the
retina such as microaneurysms (i.e., a dilation of a small
retinal capillary vessel associated with diabetic retinopathy).
Sbeh [8] used morphological reconstruction to detect drusen
by identifying regions of relative maxima and minima, and
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performing morphological reconstruction around maxima,
bounded by minima, and followed by a supervised learning
approach to reject false positives. Brandon [9] used wavelet
analysis on image regions along with rule-based classifica-
tion to identify drusen. Rapantzikos [10] used a block-based
method and thresholded each block with a level based on
a classification of the region derived from the histogram
statistics (skewness and kurtosis), or a further partition of
the region into a finer group of blocks. Neimeijer [11] used
a filter bank based on Gaussian derivatives to create features
that generated a pixel-based probability of bright lession,
which were clustered and then classified by a supervised
learning algorithm to distinguish between drusen and other
bright lesions.

In this work, we are concerned with segmentation of
drusen, with the ultimate goal of characterizing the progres-
sion of drusen through a longitudinal image study. Overall
our goal is to determine a more quantitative means of
measuring the AMD state and progression using statistical
and image processing methods. The paper is organized as
follows. In the methodology section we present an overview
of the processing used to characterize retinal structures (e.g.,
the retinal wall, and drusen lesions) in the retinal images.
In the experimental section, we describe our data set and
present the results of our analysis methods. We conclude
with observations and projections for future research.

II. METHODOLOGY

In this section we discuss the key functional steps of the
proposed algorithm including image normalization, training
and drusen characterization, processing, and identification.

A. Image Normalization

We use a method based on [12] to normalize the fundus
images to attempt to control for illumination changes. We
assumed fundus image colors in the sRGB color space. The
sRGB color space consists of three color channels red, green,
and blue, discretized into the integer range [0 – 255]. First,
the sRGB image is transformed to the CIE L*C*h* color
space. The CIE L*C*h* color space represent colors in a
sphere, where L* represents lightness, C* chroma, and h*
the hue angle. We manipulate the L*-channel to reduce
illumination variations without modifying the image’s hue
and chroma. A large median filter is applied to the L* color
plane with a neighborhood size that is roughly 0.04% of the
largest image side (i.e., 54 × 54 for a 1360 × 1024 pixel
image). This median filtered image is subtracted from the
original image to produce a difference image D, and then
each pixel of D is normalized to standard score

DN =
D − µD

σD
,

where µD and σD are the empirical mean and standard
deviation of D, respectively. Then, the normalized pixels in-
tensities in DN are mapped to the L*-channel standard range
[0 – 100]. The resulting CIE L*C*h* image is transformed
back to the sRGB color space.

Drusen 

Retinal Wall 

Veins 

Fig. 1. Example of 12×12 window samples for different retinal structures.

B. Retina Characterization

Given that the eye is a natural phenomenon, we hypoth-
esized that the color features of a retinal structure (e.g., a
drusen lesion) may abide to an unknown conditional density
function ρ( ~X|ωi), where ~X is a color feature vector in the
CIE L*C*h* color space, and the class ωi corresponds to
a retinal structure. We claim that ρ( ~X|ωi) can be estimated
by drawing samples of the class ωi from normalized retinal
images. Although it may be feasible to normalize retinal
images from all ethnicities to the same scale, at the present,
we apply our methodology to retinal images from Caucasian
patients alone. We characterize two retinal structures by esti-
mating ρ( ~X|WALL) and ρ( ~X|DRUSEN), the conditional
density functions for the retinal wall and the drusen lesions,
respectively. Next, we describe how these conditional density
functions are estimated.

We used a 12× 12 pixel window to collect samples from
retinal images with a pixel size of roughly 6µm/pixel (See
Fig. 1). The window’s underlying pixels should belong to the
same class ωi. Consequently, each window contributes with
144 data samples for the corresponding retinal structure ωi.
The size of the window was selected with the purpose of
making the window smaller than the retinal structures, while
keeping a satisfactory sample size. We extracted samples
for the following structures: blood vessels, retinal wall, and
drusen lesions. The blood vessel samples were used to select
the candidate drusen pixels, which will be discussed later.
The samples were labeled and stored. Each data sample
~X consisted of three features, the lightness (L), saturation
(S = 100 × C/

√
C2 + L2), and hue (h) values of the cor-

responding CIE L*C*h* pixel. It is important to underscore
that ρ( ~X|ωi) does not characterize the surface (i.e., texture)
of the window sample, it rather models the likelihood that a
pixels color triplet [L,S,h] belongs to the class ωi. Although
we use a window to collect samples, the spatial information
is lost when the window is transformed to a column vector.

The steps to estimate ρ( ~X|ωi) are: 1) Collect all M 12×12
window samples that correspond to ωi. 2) Transform the win-
dow samples to M 144-pixels arrays, and concatenate them
to a single M×144-pixels array. 3) Individually, normalize
each color channel to standard score. 4) Find the minimum,
Cmin, and maximum, Cmax, values of the normalized values
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Normalized L-Channel Cleaning Threshold 

Step 1 Step 2 

Fig. 2. Two-step pre-processing of retinal images to select drusen pixel
candidates.
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Typical Normalized L−Channel Histograms for an Image with Drusen

 

 

Blood Vessel
Drusen
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Fig. 3. Example of typical L-Channel histograms for retinal wall, blood
vessels, and drusen lesion samples.

(All channel values together). 5) Create a three-dimensional
histogram with range [Cmin, Cmax]. The number of bins
depends on the number of available samples. We binned our
training samples in 343 bins (7 bins per channel). A larger
number of bins will spread the samples in the histogram,
making the bin counts unreliable. 6) Bin the normalized
samples in the three-dimensional histogram, and divide all
the bin counts by the number of samples N (N =M×144).
This last step will make

∫
ρ( ~X|ωi)d ~X = 1.

C. Drusen Pixel Candidates Selection

As explained above, our statistical segmentation of drusen
works at the pixel level. Retinal images are composed of
more than half a million pixels, which we would like to
process in an efficient manner. Therefore, it is advantageous
to remove from the segmentation process pixels that are
unlikely to be part of a drusen lesion. To address this, the
retinal image goes through a two-step pre-processing (See
Fig. 2), with all operations performed in the normalized L*-
channel. In Step 1, we compute a binary mask MT with
pixels “ON” when the corresponding image pixel intensities
are greater than T and “OFF” otherwise. As shown in
Fig. 3, our assessment of the training samples (obtained from
three images of patients with significant drusen) showed that
drusen pixel intensities are likely to be greater than one
standard deviation over the mean of the image intensities;
which translates to pixels intensities greater than one (i.e.,
T=1) for a normalized L*-channel. In Step 2, we turn “OFF”
pixels from MT that are close to the circular edge of the
retinal image and the optical nerve. The retinal edge has a
tendency to generate glare and bright artifacts; and the optical

nerve usually appears as a bright disk in the retina. However,
it is convenient to remove these structures from our candidate
pixels, because both structures are far from the macula
region. A vignette mask MV is computed from for the retinal
image and its border is dilated so the mask overlaps with the
retinal edge. The center pixels of the mask are “ON” and the
outside pixels are “OFF”. Then, an additional mask MON is
generated with a disk centered at the position of the optical
nerve and with radius about 15% of the size of the image.
The disc pixels are turned “OFF”, and the mask remaining
pixels are “ON”. Finally, the drusen candidate pixel mask
MDC = MT ∩MV ∩MON . The remaining operations of
the proposed algorithm are performed over these candidate
pixels alone.

D. Drusen Identification

(a) (b)

Fig. 4. Likelihood that the drusen candidate pixels of the left image in
Fig. 2 (a) belong to retinal wall, and (b) drusen lesion structures.

(a) (b)

Fig. 5. Final (a) likelihood ratio results, and (b) segmentation mask, MD ,
for the drusen candidate pixels of the left image in Fig. 2

To classify the pixels as part of a retinal wall or a
drusen lesion structure, we employ the likelihood ratio
of the Neyman-Pearson lemma. First, from the estimated
ρ( ~X|WALL) and ρ( ~X|DRUSEN), in Subsection II-B, we
calculate the likelihood that each candidate pixel belongs
to either class WALL or DRUSEN. Fig. 4 illustrates the
likelihood results for both classes. Then, we can calculate
the likelihood ratio

log
ρ( ~X|DRUSEN)

ρ( ~X|WALL)

>

≤
η, η ∈ R.

If the ratio is greater than η the pixel is classified as part
of a drusen lesion, and as a retinal wall otherwise. Although
an optimal η∗ can be computed from training data, we fixed
η = 1. This means that a pixel is classified as drusen when
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ρ( ~X|DRUSEN) > ρ( ~X|WALL). A binary mask MD is
created, with all pixels classified as drusen “ON” and the
remaining pixels “OFF”.

As a final step, morphological operations are performed
to fill holes in the drusen mask, and to remove too small
(Area < 0.441mm2) or too large (Area > 140.6mm2)
drusen segmentations from MD. These size limits are based
on a fundus camera with pixel size of 6µm2. A final
segmentation result is shown in Fig. 5.

III. EXPERIMENTS

In this section we describe the experimental results using
data from the telemedicine network. Some background on
the data set is provided, and we then describe our validation
process. Finally we present our results on the analysis
method.

A. Data Set

Three main data sets were used in this work. The first
data set consists of AREDS2 data. From this set, we hand
selected eyes from Caucasian patients. The AREDS2 subset
has 42 patient eyes from 8 patients. One patient had only
one eye imaged, and the rest had both eyes. In the set of
images, all had at least two images taken roughly a year
apart, 6 had three images, and 2 had two images. We used
three of these images to compute the statistical properties of
the retina structures as mentioned in Subsection II-D, at a
rate of 12,816 (41.6%) retinal wall samples, 5,184 (16.8%)
blood vessel samples, and 12,816 (41.6%) drusen samples.
These training images were not used in the subsequent
processing. A second set of images (TRIAD-A) was hand
selected from the Telemedical Retina Imaging and Diagnoses
(TRIAD) network [13]. These images consisted only of “true
negatives”, in that they were all diagnosed as normal retina
with no significant lesions. Thus, any machine-segmentation
images that were found on these images were regarded as
true negatives. In this set, there were 7 images from 7 distinct
patients.

Finally, a third set of images (TRIAD-B) was also taken
from the TRIAD network, but these consisted of return
patients to the system. These images served as examples of
multiple patient visits where there was no noticeable disease
or disease progression, as characterized by an ophthalmolo-
gist review. In this set, we further filtered by restricting the
image quality as measured by the method of [14] of 0.8 or
greater. In this set, there were 70 patient-eye examples, all
from 45 degrees field of view from a total of 21 patients. In
this set, one patient had 3 images from both eyes, another
12 patients had 2 images, and the rest had one per eye only.

B. Ground truth and Post-processing

Some post-processing was added to reduce false positives
in normal images (See Fig. 6). The post-processing used a su-
pervised learning algorithm with ground-truth data provided
by reviewing images with known drusen. A morphological-
based method based on [8] was used to tag potential drusen.
The method has a tendency to over-segment which made
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it a good candidate for a ground-truth generator since we
felt confident it would detect drusen well and could be
manually filtered into true positive and false positive de-
tections. Thus the ground-truth process consisted of hand-
selected definitive, true-positive drusen candidates from the
AREDS2 images. True negatives were identified by using
the detections on images with no known drusen or other
lesions. The candidate lesions detected by the statistical
method were then grouped and a hold-one-out validation
test was conducted. A set of features of each candidate
lesion was computed [15] (e.g., simple shape-based features
and color measurements). Images were held-out of the total
data set on a per-patient basis, the neural network was
trained on the ground-truth data, and the held-out images
were filtered by classifying the candidates into ‘true’ lesions
and ‘nuisance’ lesions. See Fig. 6 and Fig. 7 for drusen
segmentation examples for a normal retina and abnormal
retina, respectively.

C. Characterization results

The neural network results revealed a sensitivity of 99%
and a specificity of 98% averaged across all the images, but
we note that these results apply only to the ground-truth data
and may not accurately reflect true drusen detection since a
completely missed lesion would not be accurately counted.
After post-processing, the number of drusen detected and
square-root of the total drusen area is shown in Fig. 8.
This reveals very high separability between the images
for this data set, with virtually perfect Receiver Operating
Characteristic (ROC) curves. However, we again note that the
data set is likely not as challenging since the AMD images
in the set have a large number of drusen.

Another characterization of the dataset is the detection of
changes over time in a patient eye. For these results, we show
a ROC curve using the change in the number of detected
drusen. See the ROC curves in Fig. 9. We again achieve
excellent results (an area under curve of 0.99), but we would
like to test the method on more challenging datasets.
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(a) (b)

Fig. 6. Segmentation results for a patient with a normal retina. (a) Drusen detected by our statistical model. (b) Most false-positves removed by our
post-processing algorithm.

(a) (b)

Fig. 7. Segmentation results for a patient with an abnormal retina. (a) Unprocessed original image. (b) Drusen detected by our statistical model. For this
patient, the post-processing algorithm did not remove any components.

IV. CONCLUSIONS

We proposed a statistical model to characterize the retinal
structures of fundus images and a methodology to detect
drusen lesions. More precisely, we showed that an estimation
of the conditional distribution of the color features in a
retina image such as lightness, saturation, and hue, followed
by a likelihood ratio classification, successfully detected the
presence of drusen lesions in abnormal eyes. The method
alone creates false positives in normal images. However, a
post-processing of the drusen candidates removes these false

positives when additional texture, shape, and spatial features
are employed in the classification.

Further work in this area involves 1) increasing the sen-
sitivity of the method, 2) improving our statistical model
and extending it to characterize other retinal lesions, 3) ex-
tending the technique for retinas with different background
pigmentation (e.g., retina images from African American,
and Hispanic patients) 4) extending this study to larger data
sets, in particular more challenging sets with more subtle
progression or evidence of AMD, and 5) to use image
analysis methods to establish a standard progression rating.
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Fig. 9. ROC curve for detection of progression in longitudinal images.
The change in number of drusen detected was used as the detection criteria.
For this data set, the algorithm works very well at identifying image sets
with significant change in drusen content.

We anticipate that when we extend this work to larger data
sets, less heuristic choices for some of the algorithm pa-
rameters will become evident. Finally, the segmentation and
characterization methods would be beneficial in a telemedical
network such as TRIAD for characterizing imaged retinas
and the progression method would be useful in detecting
changes in returning patients.
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