
  

 
Abstract—Noninvasive electroencephalography (EEG) brain 
computer interface (BCI) systems are used to investigate 
intended arm reaching tasks. The main goal of the work is to 
create a device with a control scheme that allows those with 
limited motor control to have more command over potential 
prosthetic devices. Four healthy subjects were recruited to 
perform various reaching tasks directed by visual cues. 
Independent component analysis (ICA) was used to identify 
artifacts. Active post parietal cortex (PPC) activation before 
arm movement was validated using EEGLAB. Single-trial 
binary classification strategies using support vector machine 
(SVM) with radial basis functions (RBF) kernels and Fisher 
linear discrimination (FLD) were evaluated using signal 
features from surface electrodes near the PPC regions. No 
significant improvement can be found by using a nonlinear 
SVM over a linear FLD classifier (63.65% to 63.41% accuracy). 
A significant improvement in classification accuracy was found 
when a normalization factor based on visual cue “signature” 
was introduced to the raw signal (90.43%) and the intrinsic 
mode functions (IMF) of the data (93.55%) using Ensemble 
Empirical Mode Decomposition (EEMD).  

 

I. INTRODUCTION 
RAIN Computer Interface (BCI) is a frontier for neural 
engineering research that has gathered a great deal of 
attention from scientists and the general public. One of 

the most challenging and vital aspect of BCI is the feature 
extraction and translation of the intended brain activity [1], 
which may translate the brain activities into useful motor 
commands for the arm reaching and hand grasping movement 
for neuroprosthetic devices [2][3]. While most other research 
focused on discriminating EEG signals between left hand, 
right hand, toe, and tongue imagined movement [4][5], our 
study endeavors to decode the EEG from posterior parietal 
cortex (PPC), which is the area related to the processing of 
visumotor transmission. The EEG features near the PPC 
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region were used in the context of upper limb neuroprosthetic 
applications. Our result demonstrates that by using 
multichannel surface EEG surrounding the PPC regions, 
along with a visual cue driven normalization factor, the 
direction of intended arm reaching movements towards the 
left and the right can be decoded at over 90% accuracy.  

II. METHODS 

A. EEG Measurement 
Four healthy, right-hand participants with normal or 

corrected to normal eye sight (all males, age 20-29) were 
recruited in this study. All of the subjects had no prior 
experience with BCIs. The protocol has been approved by the 
Louisiana Tech University IRB Committee. Fig. 1 outlines 
the setup where touch pad sensors were placed to record the 
subject responses. 

 

 
Fig. 1. Illustration of the experimental setup is shown. Touch 
pads (circles) are placed at the base location and the targets to 
track whether the subject has performed the tasks correctly.  
 

The sequence of each trial is shown in Fig. 2 where visual 
cues were provided using the E-Prime 2.0 system to inform 
the subjects of the proper movements to perform in a dark 
room. Two types of visual cues were provided. First, the 
“Effectors cue” instructed whether the user should physically 
perform the reaching task (with eyes open or closed) or to 
imagine the movement only. The second cue, called the 
“Action cue” informed the user of the appropriate reaching 
directions: left, right and center. A total of 450 trials were 
performed by each subject over five session blocks, with a 5 
min break in between. The contact impedance of the electrode 
was kept under 20kΩ, which is lower than the recommended 
value of 50kΩ from the user manual. EEG signals were 
recorded using 128 channels HydroCel Geodesic Sensor Net 
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(HCGSN) by Electrical Geodesics Inc. (EGI) with the 
Net-Station 5.3 software. All signals were amplified and 
anti-aliasing low-pass filtered at 100Hz. The data was then 
digitized at a sample rate of 256Hz.  

Fig. 2. The time course of one trial is illustrated.  
 

B. Data Preprocessing 
The data was digitally filtered between 0.1~30 Hz. Signals 

from 0 to 500 ms following the “Action cue” were segmented 
and extracted from the data set. Since this project focused 
only on directional information, the three different effectors 
were all included. This will eventually become the first part of 
a two stage process, with the second part potentially being a 
motor imaginary classifier which is not discussed in this 
paper. Bad channels containing motion artifacts were 
detected based on abnormal amplitude information and signal 
characteristics and were replaced by the averaged signals 
from neighboring channels. The data were re-referenced to 
the average signal. The time period of the first 100ms was 
also used as baseline correction for every trial. 

C. Spatial Filtering 
The activity between the “Action cue” and the “Go cue” 

was used because we were interested in distinguishing the 
intended direction of arm movement. Independent component 
analysis (ICA) was implemented for artifact removal [6][7]. 
Fig. 3 illustrates the projection of the components once 
artifacts were removed. Independent clusters associated with 
the activation regions provided spatial information on the 
region of interests. 

 

 
Fig. 3. The three independent component clusters 
demonstrate the activation of the PPC regions. The larger 
map shows the average across four subjects. The smaller 
maps are the individual subject responses.  

D. Source Localization as a Validation Tool 
To further validate the active brain regions associated with 
this project, DipFit 2.0 algorithm was used to estimate the 

dipole sources. The dipoles were projected onto the boundary 
element mode then plotted on the average MNI brain images 
[7]. Using the Talairach co-ordinate system, we were able to 
observe that the dipole source for each intended arm 
movement direction was close to the PPC areas, consistent 
with the literature [8]. The left component (-20, -40, 24), the 
center component (0, -33, 40), and the right component (28, 
-40, 23) were shown in Fig. 4.  
 

 
Fig. 4. Source reconstruction for the three components is 
shown. The residual variance for each dipole estimation was 
<6% for all cases, which indicated the goodness of the dipole 
fit [9].  

E. Ensemble Empirical Mode Decomposition 
The illustration of Ensemble empirical mode 

decomposition (EEMD) is shown in Fig. 5.  
 

 
Fig. 5. An illustration of EEMD. Raw signal is shown on the 
top and the IMFs are plotted below. 
 

EEMD is a data-driven analysis method that separates the 
EEG signal into a collection of intrinsic mode functions 
(IMFs). It is a powerful method for the analysis of nonlinear 
and non-stationary data such as EEG since the decomposition 
method is based on local characteristic time scale of the data. 
Gaussian white noise with standard deviation equals to 10% 
of the standard deviation of the EEG data was added to the 
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signal and 50 ensembles were created [10][11]. The EEMD 
method broke down the signals in a subject dependent manner 
strictly based on the signal characteristics without specifying 
any frequency bands. Each IMF was then considered as a 
filtered signal itself [12] with IMF1 having the highest and 
IMF7 having the lowest frequency components.  

After collecting the IMFs, the characteristics representing 
0.1-30 Hz frequency components were identified using the 
power spectral density (PSD) of each mode [13], as shown in 
Fig. 6. 

 

 
Fig. 6. The PSD estimations for IMF1 to IMF4. 

F. Feature Extraction and Classification  
The Statistical Pattern Recognition Toolbox for Matlab 

[14] was used in this analysis. The performance of support 
vector machine (SVM) classifiers with radial basis function 
(RBF) kernels and Fisher linear discrimination (FLD) were 
compared. The first feature set was the mean signal amplitude 
(280-320ms) after the “Action cue” from the region of 
interests (ROI) near the left and right PPC and Pz electrode. 
The second feature set was obtained by the summation of 
IMF3 to IMF7. The associated high frequency noise in the 
signal can be reduced through this process.  

The data associated with each direction was partitioned 
into five parts in order to perform a 5x5 cross-validation 
analysis. Binary classifiers were trained using 80% of the data 
and evaluated on the remaining 20%. The classification 
algorithm procedure was repeated 25 times for each binary 
classifier.  

Two types of normalization factors were also used to 
preprocess the data. The first normalization method involved 
scaling the amplitude of the EEG signal to span -1 to 1 cross 
each of the whole trial before calculating the mean signal 
amplitudes. We propose another cue-based “signature” 
normalization method (Fig. 7). The first 235ms of the signal 
after the “Action cue” was stored from the training data in 
each 5x5 cross-validation. The rationale for choosing this 
time window was that this part of the signal consistently 
showed a distinctive “signature” across different recording 
electrodes in the PPC regions. We normalized each trial with 
respect to the range of the “signature” signal defined to be the 
average of training data set within this time frame, so that the 
amplitude information was invariant to the direction of 
intended direction. Once that had been established, the 

amplitude feature after this time period was used as the 
feature set. We tested whether there was a need for a 
nonlinear classifier such as SVM by comparing the accuracy 
with FLD.  

 

 
Fig. 7. The normalization factor was computed before signal 
classification. The light color lines indicated individual data 
in the training set; the dark bolded line indicated the mean 
across the trials. The normalized factor was found from 
maxima and minima of the first 235 ms of the averaged 
signal. The solid gray color indicated the time interval of the 
amplitude feature. 

III. RESULTS 
The binary classification accuracy for the FLD and SVM 

algorithm is shown in Table I. This preliminary result 
suggested that the linear classifier would be sufficient for the 
decoding of intended arm movement in the left and right 
directions since there is no statistically significant difference 
between the two methods. Table II illustrates the FLD 
classifier accuracy when the normalization was performed 
with respect to the “signature” signal only. It shows the 
overall classification accuracies have been improved 
significantly (p < 0.01) over Table I. The performance of the 
classifier is slightly improved using EEMD filtered signals 
(IMF3 to IMF7) compared to the raw data. The embedded 
features space for EEMD filtered signals at the three ROI, 
along with the FLD decision boundary is shown in Fig. 8. It 
suggests that a relatively simple comparison of the mean 
signal amplitude from ROI electrodes near the PPC can 
successfully discriminate the left and right intended 
movement.  

 
TABLE І 

SINGLE TRIAL BINARY CLASSIFICATION ACCURACY (MEAN 
AMPLITUDE AFTER NORMALIZATION ACROSS WHOLE TRIAL) 

Subject FLD SVM 

A 66.40 ± 8.11% 64.73 ± 7.81% 
B 59.20 ± 4.05% 59.93 ± 5.43% 
C 72.80 ± 5.68% 72.87 ± 6.96% 
D 55.23 ± 5.48% 57.07 ± 6.54% 

Mean 63.41 ± 9.02% 63.65 ± 8.96% 
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TABLE ІІ 
SINGLE TRIAL BINARY FLD ACCURACY (NORMALIZATION 

WITH RESPECT TO THE “SIGNATURE”) 

Subject Raw Signal Sum of 
IMF3-IMF7 

A 98.23 ± 1.07% 97.67 ± 1.73% 
B 97.00 ± 2.40% 98.93 ± 1.16% 
C 93.27 ± 2.90% 87.67 ± 7.80% 
D 73.20 ± 5.48% 89.93 ± 3.95% 

Mean 90.43 ± 10.70% 93.55 ± 6.57% 
 

 
Fig. 8. Scatter plot of EEMD-based features for left and right 
intended movement separated by FLD classifier.  

IV. DISCUSSION 
The aim of this paper was to develop and validate the use of 

scalp EEG data to distinguish brain activity associated with 
the intended arm movement. In the framework of upper limb 
neuroprosthetic control, this paradigm could be directly 
implemented as a noninvasive BCI system where the user’s 
intent can be determined to properly activate the robotic 
prosthetic arm for  activity of daily living (ADL). Using 
EEMD with FLD classification technique, the overall 
accuracy of 93.55±6.57% can be achieved for two motor 
directions cross four subjects prior to actual motion, which is 
significantly better than any previously reported results to the 
best of our knowledge, making it suitable for real-time 
application. There is still debate over the best classification 
method for BCI. Our result suggested that the linear classifier 
would be sufficient in this application. The classification 
accuracy is promising and comparable to most current BCI 
systems [8][9]. EEMD method is adequate in removing high 
frequency artifacts. Further study related with different 
subjects, such as a left hand user, is necessary for having a 
better understanding of BCI control strategy. More subjects 
have been recruited to provide more conclusive results on the 
advantage of the proposed “signature” normalization and 
EEMD algorithm. Multi-class classification using 
one-against-one decomposition and majority voting classifier 
for intended arm reaching movement direction has now been 
underway. Our group is also currently investigating other 
feature selection methods and artifact removal techniques to 
improve the classification algorithm. So far, we have studied 

the spatial information (near the PPC) on the signal 
classification. Other potential features that may be relevant to 
this application included frequency features as well as 
temporal features after visual cues. The potential applications 
of this BCIs include a possible way for physical disable 
people who having intact cognitive functions to communicate 
with other external devices.  

V. CONCLUSION 
The left and right directions of intended arm movement can 

be distinguished at 93.55% accuracy using linear classifiers. 
Features extracted from EEG using EEMD method and visual 
cue-based signature normalization factor appeared to be 
relevant for this BCI application.  
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