
 
Abstract�A brain-computer interface (BCI) may be used to

control a prosthetic or orthotic hand using neural activity from

the brain. The core of this sensorimotor BCI lies in the

interpretation of the neural information extracted from

electroencephalogram (EEG). It is desired to improve on the

interpretation of EEG to allow people with neuromuscular

disorders to perform daily activities. This paper investigates the

possibility of discriminating between the EEG associated with

wrist and finger movements. The EEG was recorded from test

subjects as they executed and imagined five essential hand

movements using both hands. Independent component analysis

(ICA) and time-frequency techniques were used to extract

spectral features based on event-related (de)synchronisation

(ERD/ERS), while the Bhattacharyya distance (BD) was used

for feature reduction. Mahalanobis distance (MD) clustering

and artificial neural networks (ANN) were used as classifiers

and obtained average accuracies of 65 % and 71 % respectively.

This shows that EEG discrimination between wrist and finger

movements is possible. The research introduces a new

combination of motor tasks to BCI research.

Index Terms � Brain-computer Interface (BCI),

electroencephalogram (EEG), event-related (de)synchronisation

(ERD/ERS), independent component analysis (ICA)

I. INTRODUCTION

EOPLE who suffer from motor impairments can benefit
greatly from a system that can return some of the

essential functionality of the human hand [1]. Such people
may have had an arm amputated or have suffered a stroke or
spinal cord injury [1]. The lost hand of an amputee can be
replaced by a robotic prosthetic hand, while the non-
functional hand of a victim of a stroke or spinal cord injury
can be supported by a robotic exoskeletal orthotic hand [1].
These external devices can then be controlled using the
user�s thoughts with the help of a brain-computer interface
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(BCI) to reroute the signals directly from the brain to
actuators in the prosthetic/orthotic hand [1, 2].

This solution can be used to allow motor-impaired
individuals to perform essential hand movements that
facilitate the performance of daily activities [1, 3].
Considering the movements that patients learn during motor
rehabilitation [4, 5], five basic hand movements are
considered i.e. wrist extension (WE), wrist flexion (WF),
finger extension (FE), finger flexion (FF) and the tripod
pinch (TR). Occupational therapists consider these to be the
most essential hand movements [4, 5, 6].

The core of an effective BCI solution will require that the
neural information associated with the essential hand
movements be extracted and translated from neural signals,
such as electroencephalogram (EEG), in real-time [7, 8]. The
combination of these five essential hand movements has not
yet been explored in EEG-based BCI literature [9]. It is thus
necessary to first investigate the possibility of interpreting
the EEG for the five hand movements offline on a single-trial
basis since this serves as a first step toward real-time BCI
functionality [1, 9]. BCI literature has shown that the
discrimination of movements on the same limb is a
challenging task [9]. However, success has been shown in
the classification of binary combinations of four types of
wrist movement tasks on the same hand [10, 11]. This
suggests that the binary classification of other types of
unilateral hand movements may be possible. To date, a study
has not been conducted to differentiate between major parts
of the hand i.e. the wrist and fingers [9-12]. Hence, as an
intermediate step, the differentiation between EEG for wrist
and finger movements is investigated in this paper by
grouping WE and WF into one class and FE, FF and the TR
into another. This forms part of the effort to improve on the
incomplete understanding between central neural signals and
hand movements [2].

II. BACKGROUND

A. Electroencephalogram and ICA

There are several challenges associated with the extraction
of relevent information from EEG. The signals are small (in
the µV range), and present a large inter-trial variability [1].
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Recording activity from billions of simultaneous neural
processes from a limited number of EEG electrodes (e.g. 128
electrodes) results in a considerable mixing of information
sources from all over the head at each electrode [1, 13].
However, clinical research has increased the understanding
of EEG signals and their relationship with imagined
movements and inexpensive computer equipment supports
the computational demands for EEG signal processing [1, 8
14]. Hence EEG can be used as a suitable signal source for
basic prosthetic/orthotic hand control [1] in a controlled
laboratory environment.

ICA is commonly used in BCI research to remove artifacts,
but has also proven useful in separating biologically
plausible brain components whose activity patterns relate to
behavioural occurrences [13]. In some studies, ICA has
shown superior performance over other methods of spatial
filtering [15, 16] and has aided the discrimination of EEG for
different unilateral wrist movement tasks [11]. This suggests
that it may be beneficial for isolating rhythmic activity from
the sensorimotor cortex for other types of hand movements
[1].

B. Sensorimotor Brain-computer Interface

The main components of a BCI are shown in Fig 1. They
enable the actuation of the external device according to the
user�s intent [1, 17]. Sensorimotor BCIs are ideal for the
control of a prosthetic/orthotic hand since they deal with
motor functions from and sensory inputs to the sensorimotor
cortex of the brain. Prominent electrophysiological features
associated with the brain�s normal motor output channels are
mu (8�12 Hz) and beta (13�30 Hz) rhythms [1, 17]. The
rhythms are synchronised when no sensory inputs or motor
outputs are being processed [1, 17]. Movement or movement

preparation results in a desynchronisation (decrease in
amplitude) of the mu and beta rhythms, referred to as event-
related desynchronisation (ERD) [1, 17]. Event-related
synchronisation (ERS) occurs after movement when the
rhythms synchronise (increase in amplitude) again [1, 17].
ERD and ERS occur during imagined movements as well,
making them suitable for paralysed individuals [1, 3].
Features based on ERD/ERS have been used successfully to
classify EEG for some types of wrist movements [10, 11].

III. METHODOLOGY

Fig 1 summarises the major processes that make up the
method in order to classify between unilateral wrist and
finger movements. The process is applied to real and
imagined movements.

A. Data Acquisition

Data was captured from five right-handed, healthy, male,
untrained volunteers in their early twenties. The subjects
were seated in a chair, resting their forearm on an arm rest
[10, 11]. A computer screen was used along with custom
Eprime software [18] to queue the movements while the
subjects� EEG were measured. An EGI system that consisted
of 128 high-impedance scalp electrodes (forming the GSN
128) along with the Geodesic EEG System and Net Station
Software was used [19]. The electrodes were Ag/Ag-Cl
electrodes with sponge attachments soaked in an electrolyte
solution of potassium chloride [19].

Each subject was asked to perform real and imagined sets
of  the 5 selected movements for each hand (starting with the
right hand). Therefore, for each hand, the subjects performed
10 sets of movements: 5 for real movements and 5 for
imagined movements. Each set consisted of 20
repetitions/trials of one type of movement [11]. The order of
the sets was randomised and thus differed for each subject so
that no movement type was preferred [12]. In summary each
test subject performed: movement set (5) × L/R hand (2) ×
real/imagined (2) × repetitions (20) = 400 trials.

The type of movement for each set was shown to the
subjects on the computer screen prior to the commencement
of the set and a brief practice session was allowed. There
were short breaks between sets and the repetitions for each

Fig. 1. Model of a sensorimotor BCI used for communication to a prosthetic hand.
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set were performed continually. The trials were queued by
instructions shown on the computer screen, the timeline of
which is shown in Fig 2 [11, 20].

B. Pre-Processing

EEGLAB was used to handle the pre-processing [13].
Noisy channels were removed and a bandpass filter between
0.5 Hz and 100 Hz was applied to the data [11, 20], which
was sampled at 200 Hz by the EGI system [19]. A 50 Hz
notch filter was also applied [16].

Data was then divided into 7 s trials, from t = -1s to t = 6 s,
placing t = 0 at the Get Ready event (pre-movement
stimulus) shown in Fig 2. This was done so that the
continuous signals were not split in the crucial areas of S1
and S2. The left hand data for subjects 1 and 4 was unusable
and thus discarded.

The Automatic Artifact Removal (AAR) toolbox for
EEGLAB [21] was used to remove artifacts, which included
electro-oculogram from eye-blinks and eye movements, and
electromyogram from tongue, face, neck and shoulder
movements [1]. Artifacts were removed using spacial
filtering and blind source separation [21]. A bandpass filter
between 8 � 30 Hz was then applied to isolate and mu and
beta data [10].

C. ICA and Source Localisation

ICA was run using the infomax algorithm on the individual
hands of each subject [13]. This decomposed the EEG into
separable localised sources of potentials. The potentials or
ICs emanating from the motor cortex were visually selected
and isolated. The criteria for selection were based on:
1. Viewing localised activity mainly in the region of the

primary motor cortex that controls the hand, but activity
in the supplementary motor area and premotor area was
also considered [22]. 2D top-view plots of voltages
across the scalp for each IC indicated the region of
neural activity.

2. The presence of ERD just prior to and/or during S2 as
well as ERS after S2 [23]. This was calculated using the
inter-trial variance method [23].

Several ICs representing motor activity were selected per
subject and per hand. This approach is advantageous since
the inter-subject variability of EEG makes it difficult to
predict which electrodes provide relevant information [22].
It also helps to capture the information from different regions
of the motor areas, which may activate during different
stages of movement [22]. Furthermore, it reduces the
dimensionality of the data and filters contamination from
non-sensorimotor neural potentials, such as the visual alpha
rhythm [17]. The number of selected ICs varied between test
subjects, ranging between 8 and 12.

D. Feature Extraction and Selection

A time-frequency technique, originally used for audio
identification [24], was adapted and used to extract power
spectral features from the selected ICs (since audio and EEG
signals are both non-stationary). The time range from t = 1 s
to t = 4 s was considered (see Fig 2) in order to include pre-

movement and movement execution/imagination phases. An
overlapping sliding window of 300 ms was then applied in
increments of 100 ms [11, 16]. The power spectrum for each
window was calculated using an FFT. The frequency
spectrum was then split into 7 bands of 3 Hz each [20] and
the sum of the powers within each band formed a feature. 28
time windows were extracted over the time range considered,
with 7 power band features each. This was done for each IC,
resulting in a total number of features ranging between 1568
and 2352.

The Bhattacharyya distance (BD) was used to select the
best features according to how well each feature separated
the classes [16, 20]. Hence the BD was calculated for each
feature and the 18 features with the largest BD were selected.
This provided low dimensionality and was found to be the
optimum number of features during iterative testing.

E. Classification

A clustering classifier based on the Mahalanobis distance
(MD) is simple and robust and has shown good performance
in BCI research [7]. The MD measures the dissimilarity
between feature vectors from different classes and can also
be used to remove outliers [25]. Multilayer perceptron
artificial neural networks are used widely in BCI research [7]
and were used to verify and possibly improve on the MD
classification results.

The squared MD di
2 between the i

th vector of dataset x and
the mean of dataset y can be calculated using (1), where mY is
the mean of dataset y and CY

-1 is the inverse covariance
matrix of dataset y [26].

( ) ( )YiY

T

Yii xCxd mm --= -12

(1)

The MD was then used to calculate the distance between
each trial in a given class to its own mean and to the mean of
the other class [26]. If the distance between a single-trial
feature vector xi and the mean of its class mx was smaller than
the MD between that single-trial vector and the mean of the
other class, then it was concluded that xi belongs to class x.
The trial being tested was removed from the calculations of
the means and covariances of the classes/clusters allowing all
trials to be used for testing.

Alternatively, for classification using artificial neural
networks (ANNs), the data was divided into training and
testing data. The number of hidden nodes was optimized
iteratively considering all subjects. Hence, MLPs each
consisting of 18 input nodes, 24 hidden nodes and 1 output
node are trained per subject per hand.

In clinical applications, sensitivity and specificity are
often used to evaluate the accuracy of diagnostic tests [27].
They respectively describe the likelihood of true positive and
true negative test results [27]. Sensitivity and specificity can
be generalized to 2 class datasets, for example: wrist
movements = positive test result and finger movements =
negative test result. Classification accuracy was thus
measured by calculating the average of the sensitivity and
specificity measures (SSA) as shown in (2), where T and F
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respectively represent the number of correctly and falsely
classified trials for each class. Subscripts W and F denote
wrist and finger classes respectively.
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IV. RESULTS AND DISCUSSION

The MD and ANN results are summarised in Table I and
Table II respectively. Classification is shown per subject for
real and imaginary movements. The results show reasonable
classification accuracies, which are consistent across most
test subjects for both hands. ANNs performed better than
MD clustering. This is probably due to the ANNs managing
to capture the hidden patterns amongst the features more
accurately than the simple distance-based approach of the
MD method.

Classification is slightly more successful for imagined
movements than for real movements. This is contrary to the
findings of other BCI studies [20], where classification
results for real movements are superior due to real
movements generating stronger motor neural activity [20].
However, some studies have shown similar results for real
and imagined movements [11]. The superior results for
imagined movements in this study could be due to the fact
that all the test subjects were university students who were
familiar with motor imagery. Consequently their
concentration levels and imaginative skills may have been
above average, which may have increased the classification
accuracy for imagined movements [28]. The use of
movements, such as WE, in everyday life made movement
imagination in [10] easier for test subjects. In this study, the
use of WE, WF, FE, FF and the TR in everyday life may
similarly have made the motor imagery tasks easier for the
test subjects, thus enhancing their sensorimotor EEG
patterns, despite having no training.

The success of this research is important since it shows
that the discrimination of neural signals from neighbouring
areas of the motor cortex is possible using EEG. This allows
the real or imagined movement of major parts of the hand i.e.
the wrist and fingers, to be interpreted via EEG. The use of
ICA along with high resolution EEG (128 channels) played

an important role in this regard. Common hand movements
such as FE and the TR [4. 5], which are novel to BCI
literature, can be explored in future research involving
prosthetic/orthotic hand control using a BCI [9]. Future work
aims towards accurately classifying the individual five
essential hand movements; first offline and thereafer in real-
time.

V. CONCLUSION

This paper focuses on discriminating between unilateral
wrist and finger movements in order to improve EEG
interpretation to allow a sensorimotor BCI to control a
prosthetic/orthotic hand. The average results for the MD and
ANN classifiers are 65 % and 71 % respectively. These
results show that the offline discrimination between wrist and
finger movement EEG, for real and imagined movements, is
possible. This is an important step towards allowing a
prosthetic/orthotic hand to perform essential hand
movements.
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