
  

  

Abstract—This study examined the feasibility of decoding 
semantic information from human cortical activity. Four 
human subjects undergoing presurgical brain mapping and 
seizure foci localization participated in this study. 
Electrocorticographic (ECoG) signals were recorded while the 
subjects performed simple language tasks involving semantic 
information processing, such as a picture naming task where 
subjects named pictures of objects belonging to different 
semantic categories. Robust high-gamma band (60-120Hz) 
activation was observed at the left inferior frontal gyrus (LIFG) 
and the posterior portion of the superior temporal gyrus 
(pSTG) with a temporal sequence corresponding to speech 
production and perception.  Furthermore, Gaussian Naïve 
Bayes and Support Vector Machine classifiers, two commonly 
used machine learning algorithms for pattern recognition, were 
able to predict the semantic category of an object using cortical 
activity captured by ECoG electrodes covering the frontal, 
temporal and parietal cortices. These findings have 
implications for both basic neuroscience research and 
development of semantic-based brain-computer interface 
systems (BCI) that can help individuals with severe motor or 
communication disorders to express their intention and 
thoughts. 

I. INTRODUCTION 
Brain-computer interface (BCI) technology aims to help 

individuals with disabilities by establishing a direct link 
between the brain and external devices, enabling faster and 
more intuitive communication and control [1]. There has 
been a large of number of BCI studies focusing on extracting 
movement signals from motor cortical activity in order to 
control a computer cursor or a prosthetic limb [2, 3]. For a 
BCI system to serve as an assistive device to enable 
individuals with communication disorders to express their 
intention, it is potentially desirable to directly extract the 
meaning, i.e. the semantic information an individual is 
thinking about, from cortical activity.  

Semantic information, also referred to as conceptual 
knowledge or semantic memory, is essentially the concept of 
a specific object (e.g. an apple or car) or action (e.g. grasp or 
kick) [4]. Cognitive neuroscience studies using functional 
magnetic resonance imaging (fMRI) have suggested that 
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there exists a distributed representation of semantic 
information in the cerebral cortex [5]. One recent fMRI study 
showed that the semantic category (e.g. tools vs. buildings) of 
an object that an individual is thinking about can be predicted 
from blood-oxygen-level dependence (BOLD) signals, 
suggesting the feasibility of decoding semantic information 
from cortical activity [6]. While fMRI has been instrumental 
in the exploration of higher brain functions in humans, its 
application in BCI is potentially limited due to its relatively 
low temporal resolution and lack of portability. Recently, 
electrocorticography (ECoG) has been demonstrated as a 
promising cortical recording technique for BCI applications 
[7-9]. ECoG records brain activity with intracranial 
electrodes placed directly on the brain surface, offering high 
signal-to-noise ratio, high spatiotemporal resolution, and 
potentially broad coverage of multiple cortical networks. It 
has already received considerable attention as a practical 
modality for extracting motor control signals (e.g. hand and 
finger movement signals) from cortical activity for BCI 
applications [7, 9]. Combining previous fMRI findings and 
ECoG technology, the current study aims to examine the 
feasibility of an ECoG-based BCI system that operates by 
extracting semantic information from human cortical activity. 

II. METHODS 

A. Human subjects and behavioral paradigms 
This study was approved by the local Institutional Review 

Board and followed all guidelines for human subject 
research. Informed consent was obtained for all subjects 
before the initiation of any research procedures. Data 
presented in this paper were collected from four right-handed 
subjects undergoing clinical ECoG monitoring for intractable 
epilepsy (Table 1). Subjects performed a baseline task and 
three language tasks. During the baseline task, the subject 
was instructed to relax with eyes open for one minute. For all 
language tasks, pictures of various objects belonging to 
different semantic categories were presented to the subject on 
a computer screen in a pseudo-random order (one object per 
trial). For each trial, the picture stayed on for 2~4 seconds 
determined randomly by the computer. The inter-trial-
interval between picture presentations was 2 seconds. Table 1 
lists the language task performed by each subject during each 
experiment session. The “picture naming” task was 
performed by all four subjects, and the instruction was to 
simply name the object. Additionally, Subject A performed a 
“property identification” task, where she was instructed to 
think about various sensory and motor properties of the 
object throughout a trial, similar to tasks used in previous 
fMRI studies [6]. Subject B also performed a “closest word” 
task, where she was instructed to name an object that was 
closest to the one shown in the picture. Objects for Subject A 
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were drawn from the food, tool, and dwelling categories, 
while objects for Subjects B, C, and D were drawn from the 
food, tool, and body part categories. The “property 
identification” task used fifteen objects with five repetitions 
each. The other two language tasks used eight objects with 
six repetitions each. 

B. System setup and ECoG recording 
Standard clinical ECoG grids (Ad-Tech Corp., Racine, 

WI, USA) with between 48 and 108 electrodes (3 mm 
diameter contact area, 10 mm center-to-center distance) were 
implanted subdurally over the left hemisphere for epilepsy 
seizure monitoring and presurgical brain mapping. In 
addition, for Subjects B, C, and D, a high-density research 
grid was implanted (Ad-Tech Corp.). This research grid had 
16 disc electrodes (1.5 mm diameter contact area, 4 mm 
center-to-center distance) [10]. Figure 1 illustrates the 
placement of ECoG electrodes on a standard Montreal 
Neuroscience Institute (MNI) brain template [11]. All ECoG 
signals were band-pass filtered between 0.1 and 200 Hz and 
sampled at 1200 Hz using the g.USBamp neural recording 
system (Guger Technologies, Austria) in conjunction with the 
BCI2000 software package. The latter also controlled 
experiment paradigms and presented visual stimuli [12].  

C. Neural data processing and decoding analysis 
For both the baseline and language tasks, time-frequency 

distributions were calculated from the raw time domain 
signals using the maximum entropy method with a sliding 
window (window and step sizes of 300 and 50 ms, 1 Hz 
frequency bins) [13]. For each subject, the time-frequency 
distributions for language tasks were then log-transformed 
and converted to pseudo Z-scores using the following 
equation [14]: 

stdmean bbpr /)( −=  

Here r is the pseudo Z-score, p is the log-transformed power 
of a specific 1-Hz wide frequency band, and bmean and bstd are 
the mean and standard deviation of the log-transformed 
power for the same frequency band during the one-minute 
baseline task for the same subject. Pseudo Z-score data were 
then used in all of the subsequent data analysis. 

Two types of analysis were performed. First, the high-
gamma band activity (60-120 Hz), which was shown 
previously to be highly correlated with local neuronal activity 
during motor and cognitive tasks [15, 16], was examined as a 

function of time. Second, decoding analysis was performed to 
classify the semantic category of the presented object from 
ECoG signals recorded from all electrodes. ECoG data 
corresponding to objects of the same semantic category were 
grouped and averaged within the one second window after 
picture onset. Then, both Gaussian Naïve Bayes (GNB) and 
multi-class linear Support Vector Machine (SVM) classifiers 
[17] were used to separately decode semantic categories from 
single-trial cortical activity recorded from all ECoG 
electrodes with leave-one-out cross validation. 

III. RESULTS 

A. Subject information and electrode placement 
Table 1 lists the demographic information, total number 

of ECoG electrodes, and the language tasks performed by 
each subject. Figure 1 shows locations of ECoG electrodes, 
which were extracted from post-implant head x-ray images 
(lateral view) and mapped to the MNI brain template. For 
each subject, electrode locations were determined based on 
clinical requirements for his or her ECoG monitoring. 

B. High-gamma band activity during the picture naming 
task 
Figure 2 shows the spectrograms (i.e. time-frequency 

distributions) of ECoG signals recorded from two electrodes 
implanted in Subject A. The color represents the pseudo Z-
score. These two electrodes were above the left inferior 
frontal gyrus (LIFG, traditionally considered Broca’s area) 
and the posterior portion of the superior temporal gyrus 
(pSTG, traditionally considered Wernicke’s area). These two 
areas are the essential cortical structures for language and 
speech functions. For both electrodes, the high-gamma band, 
which typically reflects local ensemble neuronal activity, 
showed significant increase in power during the picture 
naming task.  To further illustrate the temporal dynamics of 
high-gamma band activity, the pseudo Z-score averaged 
across 60-120 Hz and across all objects was plotted as a 
function of time (Figure 3). The high-gamma band activity 
recorded from LIFG peaked at 0.75 seconds from picture 
onset, which is temporally correlated with speech production. 

Figure 1. Electrode locations for Subjects A to D. Electrode 
locations have been mapped to a standard MNI brain template. 
Red dots represent implanted ECoG electrodes used in this study. 

B A 

C D 

Table 1. Subject information and the language task performed 
by each subject during each session. 

Subject Age Gender Electrodes Session Paradigm Semantic categories
A 12 Female 64 1 Property 

identification
Food/tools/dwellings

2 Picture naming Food/tools/dwellings

B 17 Female 64 1 Picture naming Food/tools/body parts

2 Closest word Food/tools/body parts

C 23 Female 64 1 Picture naming Food/tools/body parts

2 Picture naming Food/tools/body parts

D 12 Female 124 1 Picture naming Food/tools/body parts
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The high-gamma band activity recorded from pSTG peaked 
at 1.2 seconds, when the subject perceived her own speech 
after naming an object.  This result demonstrates the high 
spatial and temporal resolution of ECoG for capturing human 
cortical activity when subjects were actively processing 
semantic information in a language task. 

C. Decoding semantic categories from cortical activity 
Figure 4 shows accuracies obtained when predicting an 

object’s semantic category from the three possible categories 
using both the GNB and SVM methods for each subject and 
each experiment session across all three language tasks. Both 
GNB and SVM were able to extract semantic categories from 
human cortical activity with accuracies as high as 74% 
(Chance level 33%). For all seven experiment sessions, SVM 
typically performed better than GNB. Furthermore, although 
statistical analysis was difficult to conduct with a limited 
number of experiment sessions, the decoding accuracy does 
not seem to differ significantly among the three different 
types of language tasks (picture naming, property 
identification, and closest word). 

IV. DISCUSSION 
This study recruited four human subjects undergoing 

presurgical brain mapping and seizure foci localization. 
ECoG signals were recorded while subjects performed 
language tasks. High-gamma band activation was observed in 
classic language areas, LIFP and pSTG, and semantic 
information was extracted from neural signals record from 
ECoG electrodes spanning multiple cortical networks. This 
study has multiple implications for both cognitive 

neuroscience research and development of future brain-
computer interface devices.  

A. Implications for cognitive neuroscience research 
In accordance with previous ECoG studies [14, 15], this 

study further demonstrates the uniqueness and potential of 
ECoG for studying human cortical processes related to 
speech and language, complementing non-invasive functional 
imaging techniques, such as fMRI and EEG. Since ECoG 
directly records electrical field potentials generated by 
neuronal activity, it has high temporal resolution, enabling 
researchers to examine cortical activity over a time scale 
(1~100 milliseconds) comparable to the neural processes of 
speech and language. Since ECoG electrodes are placed 
directly on the brain surface, it has high signal-to-noise ratio, 
which is specifically beneficial for capturing high-gamma 
band activity. 

The sequential activation of LIFG and pSTG during the 
picture naming task as reflected by high-gamma band activity 
is similar to the findings of recent ECoG studies [14]. This 
supports the more traditional view that LIFG is engaged in 
speech production and pSTG is engaged in speech perception 
[18]. The most interesting finding from this study is that 
semantic information can be directly decoded from ECoG 
signals recorded during language tasks. In the previous fMRI 
study, the participants were consciously thinking about 
various sensory and motor properties of an object for several 
seconds while BOLD signals were measured [6]. The picture 
naming paradigm used in the current study has a fast pace 
comparable to natural speech behavior during daily living. 
Thus, the current study further extends the fMRI work and 
suggests that specific semantic information is embedded in 
the activity pattern of a distributed cortical network and that 
such semantic representation is innate to natural cortical 
processes for speech production and comprehension and is 
not caused by subjects’ conscious effort in actively thinking 
about object properties. 

Figure 2. Time-frequency plots for ECoG signals recorded from 
electrodes over LIFG (blue dots and top panel) and pSTG (red 
dot and bottom panel) in Subject A. Time 0 indicates picture 
onset. Within the top and bottom panels, there are three plots 
corresponding to three semantic categories. Each plot shows data 
averaged across all objects of the same semantic category. Red 
colors indicate increases in spectral power relative to baseline, 
while blue colors indicate decreases relative to baseline.  
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Figure 3. Temporal dynamics of high-gamma activity related to 
speech generation and perception during the picture-naming task 
(Subject A). The thin and thick lines represent the high-gamma 
band activities recorded from the electrodes over LIFG and 
pSTG (as shown in Figure 2), respectively. The high-gamma 
band activity was averaged over 60-120Hz and over all objects 
and all semantic categories. 
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B. Implications for brain-computer interfaces  
To date, a large of number of BCI studies have focused 

on extracting basic movement signals (e.g. position and 
velocity) in order to control a computer cursor or a robotic 
arm [2, 19, 20]. While these motor-based BCI systems are 
effective for controlling wheelchairs and prosthetic limbs, 
they may not be the most efficient when acting as a 
communication aid. Researchers have been exploring 
possibilities of developing BCI systems based on high-level 
cognitive functions for communication augmentation. One 
well-established example is the P300-speller, which utilizes 
the classic “odd ball” paradigm, where the item of interest to 
a user occurs less frequently than irrelevant items, thus 
evoking a distinct cortical response that identifies the target 
item [21]. As another example, researches have demonstrated 
the feasibility of extracting high-level cognitive signals,   
such as the goal and expected reward value from parietal and 
premotor areas to drive BCI systems [22]. Most recently, it 
has been proposed that the dorsolateral prefrontal cortical 
activity associated with working memory function can also 
be used to extract BCI control signals [23]. The current study 
focuses on cortical processes related to human speech and 
language functions, specifically semantic information 
processing. The study offers the initial evidence that semantic 
information can be extracted from human cortical activities. 
As the demonstration of decoding movement information 
from motor cortex has led to the explosive development of 
motor-based BCI systems [3, 7, 9, 19], we expect that our 
findings about semantic information decoding will inspire the 
development of semantic-based BCI as communication aids. 
Such systems may potentially serve as a natural, intuitive, 

and fast interface for an individual with severe disability to 
communicate with others.  

C. Limitations and future directions 
While results from the current study are encouraging, 

more thorough data analysis and collection of new datasets 
are warranted. For example, a detailed and quantitative 
examination of the neural decoders (GNB and SVM) will be 
needed to identify specific cortical areas that are the most 
informative for semantic information decoding. Comparison 
between results from such analysis and existing 
neuroimaging literature will further verify the basic findings 
from this study and also provide additional insights into 
cortical representation of semantic information. For example, 
it has been debated whether semantic information is simply 
represented in a distributed fashion or there is one or a few 
hubs, e.g. LIFG and the anterior temporal lobe (ATL), that 
specifically integrate activities of multiple cortical networks 
into a localized amodal abstract representation [4]. Future 
ECoG studies using semantic tasks might be able to provide 
new evidence to answer such questions. 

The above basic neuroscience question also has 
implications for the development of a practical semantic-
based BCI system using ECoG. If the representation is 
widely distributed across the cerebral cortex, a large grid of 
ECoG electrodes needs to be implanted in order to cover a 
significant portion of the cerebral cortex. While large ECoG 
grids are often used in clinical epilepsy monitoring, it will be 
impractical to implant such large grids for BCI applications. 
Alternatively, if there are central hubs for semantic 
information representation, such as LIFG or ATL, it will be 
more convenient to implant a small high-density electrode 
arrays to those hubs and extract semantic information.  

 Decoding methods used in this study also need to be 
further improved. The current approach does not specifically 
account for potentially correlated activities across multiple 
frequency bands recorded from the same ECoG electrode 
[24]. Therefore, it is expected that application of appropriate 
feature selection and dimensionality reduction techniques 
will further improve the decoding accuracy [6]. Additionally, 
decoding analysis used ECoG frequency band activity 
averaged over the one-second time window after picture 
onset. This approach does not take full advantage of the high 
temporal resolution provided by ECoG. Detailed temporal 
profiles of ECoG signals are potentially very informative as 
shown in Figure 3, and decoding analysis using full time-
frequency distribution data is worth conducting. Lastly, as 
shown in Table 1, there are biases in age and gender given 
the small subject number. We plan to accrue more subjects to 
overcome such biases, but it is also worth noting that accrual 
rate for ECoG subjects will be slower than for healthy 
volunteers, as it depends on clinical flow of ECoG cases in 
affiliated medical centers. Finally, age, gender, and potential 
cortical changes due to epilepsy need to be taken into account 
for the generalization of results presented here to a larger 
population. In summary, this paper demonstrates successful 
decoding of semantic information from human ECoG signals, 
and this finding may pave the way for developing semantic-
based BCI systems in the near future. 

Figure 4. Classification accuracies for all datasets during the 
language tasks for both Gaussian Naïve Bayes (GNB) and 
multiclass linear Support Vector Machine (SVM) classifiers. 
Each pair of gray (GNB) and black (SVM) bars represents 
decoding accuracies for a specific dataset. Each dataset was 
labeled on the x-axis using Subject ID and session number as 
listed in Table 1. For example, “A1” indicates the dataset 
collected from Subject A’s first session.  Shown accuracies are 
obtained using ECoG time-frequency distribution data over the 
one-second post-picture-onset time window providing 
maximum classification accuracy. Chance accuracy (33.3%) is 
shown by the dashed line. 
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