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Abstract— In this paper we explore the use of electrical
biosignals measured on scalp and corresponding to mental re-
laxation and concentration tasks in order to control an object in
a video game. To evaluate the requirements of such a system in
terms of sensors and signal processing we compare two designs.
The first one uses only one scalp electroencephalographic (EEG)
electrode and the power in the alpha frequency band. The
second one uses sixteen scalp EEG electrodes and machine-
learning methods. The role of muscular activity is also evaluated
using five electrodes positioned on the face and the neck. Results
show that the first design enabled 70% of the participants to
successfully control the game, whereas 100% of the participants
managed to do it with the second design based on machine
learning. Subjective questionnaires confirm these results: users
globally felt to have control in both designs, with an increased
feeling of control in the second one. Offline analysis of face
and neck muscle activity shows that this activity could also be
used to distinguish between relaxation and concentration tasks.
Results suggest that the combination of muscular and brain
activity could improve performance of this kind of system. They
also suggest that muscular activity has probably been recorded
by EEG electrodes.

I. INTRODUCTION
In recent years, researches have been conducted to use

electrical brain activity for interacting with video games and
virtual environments [1]–[3]. In this context, researchers have
started to explore signals correlated to concentration and
relaxation states [4]–[6]. Several electroencephalographic
(EEG) markers have indeed been identified as correlated
with mental relaxation, task engagement, attention and men-
tal workload. For example, alpha rhythm (8Hz–12Hz) is
known to be attenuated or blocked by mental activity and
attention [7]. Other rhythmic activities such as beta and
theta rhythms have been investigated to quantify mental
relaxation [5] and attention level [8]. Hamadicharef et al. [9]
have also assessed the level of attention through EEG,
but employing machine learning methods to learn the best
frequency and spatial filters to use. This approach reveals
better classification accuracy than using only alpha, beta and
theta bands. More recently Mühl et al. proposed to use alpha
activity as a passive Brain Computer Interface (BCI) modal-
ity [6]. Alpha activity was used in an implicit way to adapt
the game content. Enemies speed was increased when the
alpha activity was low (which was expected to be correlated
with a low relaxation state). Unfortunately, no significant
differences for game experience and for user’s alpha power
modification were found. Electrical activity has also been
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used in an explicit way. In the game BrainBall [4] (later
adapted into a commercial game called Mindball1) players
must be relaxed to move a ball away. A ratio between beta
and alpha activity measured with forehead electrodes was
used to control the ball position. Matel Inc. also proposed
the MindFlex games2 in which the player has to concentrate
to control physical objects. However, we do not have infor-
mation about the electrical signal and the signal processing
used in these games. Despite these promising first results,
there is still a number of important scientific questions about
such systems that need to be answered. In particular:

• Quantitative and in depth performance analysis are
scarce in the litterature;

• Due to a lack of comparative study, the best elec-
trodes (number and placement) and signal processing
to be used are still not well known;

• There is still a debate about whether such systems
are pure EEG systems, independent of Electromyogram
(EMG) activity, or if EMG plays an important role [10].

Thus, in this paper we have conducted a study in which users
had to perform mental concentration and relaxation tasks to
control an object in a video game, based on EEG recordings,
which aims at addressing the aforementioned questions.

The remainder of this paper is organized as follows. In
Section II, the application developed and the experimental
procedure are described. In Section III, results are presented
and discussed. Finally, the main conclusions are summarized
in Section IV.

II. METHOD

A. Application

The goal of the game was to control the altitude of a
spaceship displayed on the screen. Two kinds of instructions
were provided to the user: “Go Up” and “Go Down”. When
“Go Up” instruction was displayed, the user had to try to
make the spaceship go up and stay at a high altitude during
35 s. The opposite behavior was expected for the “Go Down”
instruction, by making it go down. The spaceship altitude
depended on the user’s level of concentration or relaxation
as computed by the system (see section II-E). The maximum
and minimum altitudes were respectively 1 and −1. A green
line that symbolizes the smoke of the spaceship was used to
provide visual feedback to the participants. Figure 1 displays
a screenshot of the application during typical “Go Down” and
“Go Up” phases.

1http://www.mindball.se/product.html
2http://mindflexgames.com/

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 6299

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



Fig. 1. The video game application with feedback during the two different
phases (Go Down on the left, Go Up on the right).

B. Procedure

The experiment was carried out in an office room. Par-
ticipants sat in front of a 24′′ LCD screen device. The
distance to the screen was 90 cm. Before the experiment
began, all participants were informed about the aim of the
study and the relation between the spaceship position and
their mental state; and they filled out a consent form. To
make the spaceship go up, they were suggested to follow
one of the two strategies: “focus your attention on the
spaceship altitude” and “imagine sending mental orders
to the spaceship such as Go up!”. To make the spaceship
go down, they were suggested to follow one of the two
strategies: “do not focus your attention on the spaceship and
its altitude” and “focus your attention on your respiration
patterns to relax”. Participants were instructed to look at
the display screen during both conditions. They were also
informed that the recorded signals are sensitive to artifacts
(like body movement, teeth clenching), for these reason they
should move as little as possible throughout the experiment.

The experiment consisted of two parts (Part A and Part B)
corresponding to two setups (a version based on alpha
activity and a version based on machine learning methods,
respectively). To assess differences between the two setups,
the experiment had a within-subjects design. Thus all the par-
ticipants performed each part of the experiment on a different
day, separated by less than a week. To eliminate possible
order effects between versions, half of the participants started
with the first version (group A did Part A first) and the other
half with the second version (group B did Part B first).

Each part of the experiment consisted of six sessions. Each
session was divided into three blocks. Each block had two
phases: one “Go up” and one “Go Down”, starting with
a randomized order. Phase duration was 35 s. At the start
of each game, the instructions were displayed at the top
of the application screen for 5 s (“Go up” or “Go down”).
The spaceship was displayed and its altitude was directly
mapped to the control signal (see section II-E). The blocks
were separated by a break of 10 s, during this time the screen
was blanked. Each session was separated by a break of less
than 2min. This time was used to run the machine learning
process between sessions (see section II-E).

C. Participants

Ten participants (8 men, 2 women) aged from 22 to 34
(µ = 26.2, σ = 4) took part in the experiment. Subjects were
randomly assigned to the two different groups A and B.

D. Electrodes montage

Two sets of electrodes were used to record data throughout
the experiment. The first set of electrodes (EEG set) was used
to record EEG activity. The purpose of the second set (EMG
set) was to record EMG activity on the face and the neck. A
Gtec UsbAmp was used to acquire EEG data at a sampling
rate of 512Hz (EEG set). This device enabled to use 16
electrodes according to the 10-20 international system. It was
used to record EEG activity related to mental relaxation and
concentration tasks. The electrodes used were: Fp1, Fpz, Fp2,
F3, Fz, F4, T7, C3, Cz, C4, T8, P3, Pz, P4, O1 and O2.
Electrodes Fp1, Fp2, Pz were chosen accordingly to BCI
literature [5], [6]. The remaining 11 electrodes were placed
on a grid pattern to cover an important surface of the scalp.
A ground electrode (located on the left ear) and a reference
electrode (located at AFz position) were also used.

To record electrophysiological activity on the user face
and neck a MindMedia NeXus 32b device was used (EMG
set). Four electrodes were placed on the face (above and
below each eye), and one electrode was placed on the neck.
A ground electrode (located on the nose) and a reference
electrode (located on the forehead) were also used with this
setup. These electrodes were not used for online control of
the game but only for offline EMG analysis.

E. Signal Processing

Signal acquisition and online processing were conducted
using the open-source software OpenViBE [11]. Offline
processing was done using Matlab. Two control signals
were used during the online experiment. The first one was
computed using only 1 scalp EEG electrode and power
in the alpha frequency band (CS1). The second one was
acquired from 16 scalp EEG electrodes and processed by
applying machine learning methods (CS2).

The first control signal (CS1) corresponds to the opposite
of the power of the user’s alpha frequency band at Pz
location. Indeed alpha activity is known to increase when
the user is relaxed [7]. As this activity is mainly found in
the posterior half of the head [7], the electrode was placed
on Pz position. This activity was quantified by a band power
technique [12]. Band power was computed 16 times per
second on a moving window of 1 s. The alpha band selection
was based on the method of individually adjusted bandwidths
(IBFW) proposed by Doppelmayr et al. [13]. To determine
the individual dominant alpha frequency of each participant,
we used a 30 s recording of the EEG data with participants
closing their eyes. Then, the spectrum of the signal was
computed and the frequency (in 6Hz–20Hz) that shows the
maximum power was chosen. A fixed width of 4Hz around
this value was then used as the subject’s alpha frequency
band. A calibration phase with no feedback was used to scale
the control signal between −1 and 1. The calibration phase
corresponded to a 30 s relaxation task and 30 s concentration
task, both without any feedback.

To compute the second control signal (CS2), a technique
similar to the one proposed in [9] was used. All EEG
signals were passed through a bank of 4Hz bandwidth filters
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TABLE I
QUESTIONNAIRE MARKS REPORTED (MEAN±STD).

Question Part A (CS1) Part B (CS2)

Did you feel in control of the
spaceship during “Go Up”?
(1: never, 7: always)

4.4± 1.51 4.9± 1.29

Did you feel in control of the
spaceship during “Go Down”?
(1: never, 7: always)

4.4± 1.07 5.45± 1.26

Did you feel fatigue related to the
interaction? (1: very, 7: not at all)

4.3± 1.25 4.9± 1.20

How fun was the game?
(1: boring, 7: enjoying)

3.8± 1.67 4.2± 1.48

The first column corresponds to the use of alpha band power technique with
one electrode Pz (CS1) during part A. The second column corresponds to
the use of 16 electrodes and machine-learning method (CS2) during part B.

centered on all the frequencies between 2Hz and 30Hz.
A common spatial pattern (CSP) method [14] was then
used to compute spatial filters for each of them. Maximum
relevance feature selection was used to select the five most
relevant couples of frequency band and spatial filter [15].
The linear model that best matched features (computed using
the selected band pass filters and spatial filters) and both
classes (Up and Down) was then determined using linear
regression on the training set. The linear equation, selected
band filters, and selected spatial filters were then used online.
The learning process was run between each session using all
data recorded during the previous sessions of the day.

In part A, CS1 was used during the whole experiment
(altitude of the spaceship was mapped to CS1). In part B,
CS1 was used for the first session to provide feedback to the
user when collecting training data for the subsequent CS2
calibration (machine learning); CS2 was used during all the
remaining sessions.

III. RESULTS

A. Subjective questionnaire

After each part of the experiment, participants were asked
to fill in a questionnaire. Table I provides the average marks
they gave for each question. Results showed that participants
felt that they had control over the spaceship in both parts.
Indeed, the reported sensation of control (average marks
given for question 1 and 2) was on average 4.4 for Part A
and 5.17 for Part B on a scale between 1 (never) and 7
(always). During Part A, there was no significant difference
between the “Go up” and “Go down” conditions (Wilcoxon
paired test p = .95). Concerning part B, there seemed to
be a difference between “Go up” and “Go down” condition,
but it was not significant (Wilcoxon paired test p = .35).
Concerning the influence of the control signal, a significantly
better feeling of control was observed in Part B (Wilcoxon
paired test p = .02).

Questionnaire results about tiredness seemed to indicate
that participants felt the experiment relatively tiring. Part B
was reported to be less tiring, although this difference was
not statistically significant (Wilcoxon paired test p = .20).
Participants were also asked to report when they started to
feel fatigue during the experiment. Fatigue seems to start

after the middle of the experiments (54% completed for
Part A, and 62% completed for Part B). In the middle of
the experiment, participants have already completed 9min
of active control (“Go up” and “Go down”).

Concerning the fun, it seems that participants felt an
average enjoyment during the game. This could be due to the
simplicity of the interface and the absence of rewards during
the game. No significant difference was found between the
two parts (Wilcoxon paired test p = .28).

B. Online Performances

The first 5 s of each phase were ignored for the analysis of
the online performances (it corresponded to the instruction
reading time). We assessed performances by computing the
average difference between the altitude in the two conditions
(“Go up”, “Go down”) over each block. Indeed, a higher
altitude in the “Go up” condition could be interpreted as a
success. The online performance indexes are provided in Ta-
ble II. Spearmann correlation test between performance index
and participant’s control marks indicates that the difference
between conditions seems to be correlated to reported marks
(Part A r = .56, p = .09; Part B r = .72, p = .02).

The computation of a Student t-test, between conditions
“Go up” and “Go down” in each block shows that there is a
significant difference between the two conditions for seven
out of the ten participants with CS1 (Part A), and for all
the participants with CS2 (Part B) (asterisks in Table II).
When the difference is significant it is also always positive:
the spaceship altitude in the “Go up” condition is higher
than during the “Go Down” condition. Regarding to the
influence of the control signal it appears that the use of CS2
with 16 EEG electrodes provided better overall performances
compared to CS1 (Wilcoxon paired test p = .002). It
highlights the need of machine learning and subject specific
design and confirms results in [9].

TABLE II
PERFORMANCES EXPRESSED AS DIFFERENCE BETWEEN SPACESHIP

ALTITUDE IN EACH CONDITION (Zup − Zdown).
Online Offline

N. Part A (CS1) Part B (CS2) Part B (CS3) Part B (CS4)
EEG EEG EMG EEG + EMG

1 -0.07 (0.24) 0.22 (0.30)∗∗ 0.24 (0.16)∗∗∗ 0.42 (0.34)∗∗∗
2 0.18 (0.28)∗ 1.03 (0.21)∗∗∗ 0.55 (0.22)∗∗∗ 1.32 (0.16)∗∗∗
3 0.30 (0.25)∗∗ 0.95 (0.28)∗∗∗ 0.95 (0.32)∗∗∗ 1.14 (0.29)∗∗∗
4 0.32 (0.16)∗∗∗ 0.42 (0.25)∗∗∗ 0.37 (0.14)∗∗∗ 0.56 (0.35)∗∗∗
5 -0.05 (0.13) 0.24 (0.31)∗ 0.30 (0.17)∗∗∗ 0.79 (0.29)∗∗∗
6 0.22 (0.11)∗∗∗ 0.91 (0.16)∗∗∗ 0.17 (0.23)∗ 0.92 (0.24)∗∗∗
7 0.05 (0.26) 1.02 (0.39)∗∗∗ 0.35 (0.19)∗∗∗ 1.06 (0.42)∗∗∗
8 0.31 (0.13)∗∗∗ 0.35 (0.29)∗∗ 0.17 (0.20)∗∗ 0.44 (0.38)∗∗∗
9 0.20 (0.14)∗∗ 0.56 (0.29)∗∗∗ 0.15 (0.13)∗∗∗ 0.51 (0.25)∗∗∗
10 0.13 (0.19)∗ 0.57 (0.33)∗∗∗ 0.31 (0.22)∗∗∗ 0.56 (0.32)∗∗∗

µ 0.16 0.63 0.36 0.77
The first column corresponds to the use of alpha band power with electrode

Pz (CS1). The second column corresponds to the use of machine-learning
methods with 16 EEG electrodes (CS2). Offline performances using EMG
set are presented in column 3. Offline performances using the combination of
EEG and EMG sets are provided in column 4. Last line provides the average
altitude difference over participants. Values are presented as mean (std);
asterisks represent the significance of the difference (∗: significant at p <
.05; ∗∗: significant at p < .01; ∗∗∗: significant at p < .001)
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Fig. 2. Mean altitude of the spaceship on screen as function of different
conditions (“Go-Up” vs. “Down” and CS1 vs. CS2). Altitude was averaged
over all blocks and all participants. Dotted line represents altitude when
alpha frequency band at Pz electrode was used (CS1). Solid line represents
altitude when machine-learning method was used with 16 electrodes (CS2).

The analysis of performances evolution over time is shown
in Figure 2. It provides the average evolution of altitude for
both conditions and both control signals. We observed an
increase of performance over the course phase duration with
CS2. This suggests that users need time to get into the task.

C. Role of EMG

Co-occurrence of muscular activity is known to result
in contamination of EEG by Electromyogram (EMG) [16].
Therefore an evaluation of EMG activity during the interac-
tion is necessary. For this purpose signals recorded during
Part B using face and neck electrodes (EMG set) were
analyzed. We computed a control signal (CS3) based on
EMG set employing the same machine learning methods
as the one used for CS2 (see section II-E). The usage of
EMG set led to a significant difference between the “Go
Up” and “Go Down” conditions for all the participants
(Table II). This means that the recorded information in facial
and neck electrodes can be used to discriminate between the
two conditions although the use of EEG set (CS2) provided
better performances (Wilcoxon paired test p = .033). One
interpretation of these results is that EMG set measured
some EEG activity, which is enough to discriminate between
tasks (indeed electrodes above the eyes are able to measure
some frontal EEG activity). A more likely interpretation
is that EMG set measured EMG activity, which provides
information to discriminate between tasks. This would mean
that a discriminant muscular activity occurred when users try
to do the two mental tasks, however they were asked to try to
avoid muscular activity during the experiment. This second
interpretation would also imply that the EEG set measured
a part of this discriminant muscular activity.

To evaluate the combination of EEG and EMG sets in
terms of performance the computation of a control signal
(CS4) based on the three most relevant EEG features and
the two most relevant EMG features was done (to have 5
features as with EEG or EMG alone). The combination of
EMG and EEG allowed to increase performances in terms of
difference between conditions compared to CS2 (Wilcoxon
paired test p = .019). This result may indicate that there are

relevant information in the two sets of electrodes that are not
redundant between the sets. Future work should be done to
quantify the part of information in each set and to qualify the
origin of this information (muscular versus brain activity).

IV. CONCLUSION
In this paper, we have explored the use of two different

setups based on scalp electrical biosignals corresponding to
mental relaxation and concentration tasks to control a video
game. Results of this experiment are surprisingly good and
suggest that both setups seem well suited for interaction with
simple video games. Analysis of signal from face and neck
electrodes (EMG set) suggests also that there is relevant in-
formation in muscular activity correlated to the two different
tasks and that the combination of EEG and EMG electrodes
in a hybrid BCI [17] paradigm could improve performance.
They also suggest that the current BCI approaches using EEG
to detect concentration and relaxation tasks (e.g. [4]) may not
be pure BCI as they may be involuntarily using EMG signals
recorded with EEG electrodes.
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