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Abstract— The detection of event-related potentials in the
electroencephalogram signal is a common way for creating a
brain-computer interface (BCI). Successful detection of evoked
responses can be enhanced by the user selectively attending
to specific stimuli presented in the BCI task. Because BCI
users need a system that performs well in a variety of contexts,
even ones that may impair selective attention, it is critical to
understand how single trial detection is affected by attention.
We tested 16 participants using a rapid serial visual/auditory
presentation paradigm under three conditions, one in which
they detected the presence of a visual target, one in which they
detected the presence of an auditory target, and one in which
they detected both visual and auditory targets. The behavioral
performance indicates that the visual task was more difficult
than the auditory task. Consistent with the higher behavioral
difficulty of the visual task, single trial performance showed
no difference between single and dual-task for the visual target
detection (mean=0.76). However, the area under the curve for
the auditory target detection was significantly lower than the
dual-task (mean=0.81 for single task, 0.75 for dual-task). The
results support the conclusion that single-trial target detection
is impaired when attention is divided between multiple tasks.

I. INTRODUCTION

Brain-computer interfaces (BCIs) based on event-related
potentials (ERP) typically require subjects to follow a spe-
cific task in order to produce a robust and detectable ERP
in the electroencephalogram (EEG) signal, e.g. the P300
speller [1]. A critical requirement in these BCI tasks is that
the user has to pay attention to key stimuli in order to elicit
an ERP. An example that illustrates the potential effects of
single vs. multiple tasks is the P300 speller. Studies have
shown that the efficiency of the P300 speller depends on eye
gaze [2], [3]. Besides, a common practice in the P300 speller
for improving P300 responses is to count the visual stimuli
appearing on the target. However, a person may desire to do
several tasks at the same time, e.g. spell a word with a P300
speller and listen to the radio. This may impair the subject’s
ability to count visual stimuli. If a person does other tasks,
the detection may be harder to achieve. Besides, BCI are
often combined with other communication devices to provide
an enhanced communication control. Based on the existing
empirical evidence, the extent to which BCI performance
is degraded by divided attention is unclear. Here we use a
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dual-task paradigm to investigate the extent to understand
the impact of divided attention on BCI performance.

A dual-task paradigm is a procedure in experimental
psychology that requires an individual to perform two tasks
simultaneously, in order to compare performance with single-
task conditions [4]. Two common findings are that (i) perfor-
mance on both tasks is impaired compared to when each task
is performed in isolation and (ii) if the tasks are not presented
at exactly the same time, performance on the second task
suffers the most severe impairment [5]. The main classes
of explanations are capacity sharing, processing bottlenecks
and cross talk. Capacity sharing assumes that people share
a limited pool of attentional resources among the different
tasks. Bottleneck theories, on the other hand, assume that
the impairment arises because tasks are competing for a
single limited capacity mechanism that processes information
serially. Cross-talk explanations assume that the dual-task
impairment arises because task-relevant information from
one task interferes with the processing of the other task.

In dual-task experiments, the main issue relevant for the
present work is that in addition to the drop in performance
relative to a single task, there is also a reduction in the
amplitude of the P300 ERP component. Because the P300
amplitude is sensitive to the amount of attentional resources
engaged during dual-task condition, this leads to the hy-
pothesis that single trial detection should be impaired under
dual-task conditions [6], [7]. In this study, we tested this
hypothesis using a rapid serial visual/auditory presentation
(RSVAP) paradigm in which subjects had targets presented
in the visual modality, targets presented in the auditory
modality, or targets presented in both visual and auditory
modalities.

II. EXPERIMENTAL PROTOCOL

Visual stimuli consisted of images of faces and cars em-
bedded in random Gaussian noise fields. Participants sat 125
cm from the monitor in a darkened room. Images subtended
a visual angle of 4.57 degrees. Images were presented at
fixation at a rate of 2Hz, with each image on the screen for
500 ms and no inter-stimulus interval.

Auditory stimuli consisted of words from the military
alphabet, e.g. “bravo”, “charlie”, recorded using a com-
puterized text-to-speech function. Ten two-syllable auditory
stimuli were used, with the average duration of playback
equaling 499 ms and a standard deviation of 70 ms. Auditory
stimuli were presented through two Dell speakers placed
to the left and right of the monitor. Auditory simuli were
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presented every six images. The sequence of image and
auditory presentation ran uninterrupted for 2 minute intervals
with self-paced breaks in between.

Sixteen subjects (11 female) ranging in age from 18
to 44 (mean=21.5, sd=5.8) participated for either $20 an
hour or school credit. All procedures were approved by
the University of California Santa Barbara Human Subjects
Committee. Each participant performed the RSVAP task
under three attention conditions:

1) In the visual-only task, participants were instructed to
monitor the images for the appearance of a face, and
to press the spacebar key as soon as a face image
was detected. No response to the auditory stimuli was
required in the visual-only task.

2) In the auditory-only task, participants were instructed
to monitor the auditory stream for a target word and
press the return key when the target was recognized.
The target word was randomly selected at the outset of
the auditory-only task and was held constant through-
out the task condition. During the auditory-only task,
participants were instructed to leave their eyes open
and to watch the screen, but to not respond to any of
the images.

3) In the dual-task, participants were instructed to simul-
taneously monitor the visual and auditory streams for
targets. The target word in the dual-task was selected
randomly and separately from the target selection in
the auditory-only task.

The order of the conditions was counterbalanced across
participants. It is worth noting that the visual and auditory
stimuli were identical in all attention conditions of the task,
with the only difference being a focus on one modality over
another. The target probability for both auditory and visual
stimuli was set to 10%. A total of 4,800 images (480 faces)
and 800 auditory words (80 target words) were presented in
each condition. As one task is based on visual stimuli and the
other on auditory stimuli, it precludes sensory-level conflicts
for the targets. For the behavioral response, there exists no
motor conflict between the two tasks. Thus, these parameters
decrease any perceptual conflict that may arise.

A. Signal acquisition

The EEG signal was measured for each subject from
32 Ag/AgCl sintered electrodes mounted in an elastic cap
and placed according to the International 10-20 system.
Additional electrodes were above and below each eye, 1cm
lateral to the external canthii, and placed at the right and left
mastoids. The data were acquired at 512 Hz.

B. Signal processing

A set of features were extracted from the EEG signal to
determine if an ERP has been effectively detected or not.
The goal is to find a set of features that will enhance the
discrimination between targets and non targets, i.e. ERP
on the target and ERP on non-target. Because the target
occurred on 10% of the trials, we expected that each target
should evoke a robust P3 ERP component [8]. Therefore,

we can estimate the presence of an ERP within 1s just
after the presentation of the stimulus. The EEG signal
was first bandpassed filtered (Butterworth filter of order 4)
with cutoff frequencies at 1 and 10.66Hz. Then, the signal
was downsampled to obtain a signal at a sampling rate
equivalent to 32Hz. This new sampling rate corresponded
to the sampling frequency used by the winning team of
the competition in an international workshop on machine
learning in signal processing (MLSP) [9]. For the following
steps, we considered the observed signal over 812ms after
the start of a visual stimulus (26 sampling points).

The next step consisted of enhancing the relevant signal
by using spatial filters. Let us denote by U ∈ RNs×Nf , the
spatial filters, where Ns is the total number of sensors and
Nf is the number of spatial filters. The signal after spatial
filtering is defined by Xfilt = XU where X ∈ RNt×Ns is
the recorded signal, Nt is the number of sampling points.

For spatial dimension reduction, we assumed that while
the expected ERP is stable, the latency and amplitude of
the ERP may vary over time for a given task, we assume a
spatially stationary waveform of the ERP. This assumption
permitted the consideration of a single set of spatial filters
that can be applied to the complete signal. We consider here
the xDAWN algorithm [10], [11]. This method has been
already successfully applied in BCI for P300 detection in the
P300 speller paradigm. An algebraic model of the enhanced
signals XU is composed of three terms: the ERP responses
on the target (D1A1), a response common to all stimuli, i.e.
targets and non-targets confound (D2A2) and the residual
noise (H), which are filtered spatially with U .

XU = (D1A1 +D2A2 +H)U. (1)

where D1 and D2 are two real Toeplitz matrices of size
Nt ×N1 and Nt ×N2 respectively. D1 has its first column
elements set to zero except for those that correspond to a
target onset, which are represented with a value equal to
one. For D2, its first column elements are set to zero except
for those that correspond to stimuli onset. N1 and N2 are the
number of sampling points representing the target (the P300
response) and superimposed evoked potentials, respectively.
H is a real matrix of size Nt ×Ns. We define spatial filters
U that maximize the SSNR:

SSNR(U) = argmax U

Tr(UT ÂT
1 D

T
1 D1Â1U)

Tr(UTXTXU)
(2)

where Â1 corresponds to the least mean square estimation
of A1 :

Â =

[
Â1

Â2

]
= ([D1;D2]

T [D1;D2])
−1[D1;D2]

TX(3)

where [D1;D2] is a matrix of size Nt× (N1+N2) obtained
by concatenation of D1 and D2. Spatial filters are obtained
through the Rayleigh quotient by maximizing the SSNR [11].

For the classifier input, we used four spatial filters (Nf =
4). For each input vector, the signals were normalized so
that they had a zero mean and a standard deviation equal
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to one for each spatial component. Finally, the input vector
was obtained by the concatenation of the Nf time-course
signals across spatial filters. The Bayesian linear discriminant
analysis (BLDA) classifier was used for the detection of the
P300 wave [12], [13].
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Fig. 1. Behavioral and single trial detection performance in single and
dual-task for auditory and visual target detection. On each box, the central
mark is the median, the edges of the box are the 25th and 75th percentiles,
the whiskers extend to the most extreme data points not considered outliers,
and outliers are plotted individually.

III. RESULTS

A. Behavioral performance

Behavioral performance was assessed by computing the
estimated area under the curve (AUC) of the receiver op-
erating characteristic (ROC) curve. This area was obtained
as the normal cumulative distribution function of d′/

√
2

where d′ is the sensitivity index d′ = Z(hit rate) −
Z(false alarm rate) and Z(p), p ∈ [0, 1], is the inverse of
the cumulative Gaussian distribution. This estimation allows
us to obtain the same measurement for both behavioral and
single trial classification. The mean hit-rate across subjects
decreased for both the visual and auditory detection from
the single task to the dual task, from 57.94% to 54.53%
and from 85.70% to 81.17%, respectively. However, the only

significant difference was for auditory target detection: paired
t-test revealed that the hit-rate in the dual task was lower than
in the single task (t15 = 2.382, p < 0.02). The low hit-rate
of the visual target detection shows the difficulty of this task
compared to the auditory target detection.

B. Single trial detection

The different ROC curves for the detection of visual
and auditory targets in single and dual-task conditions are
presented in Figure 2. The mean AUC was 0.758, 0.759,
0.809, and 0.751, for single task visual target, dual-task vi-
sual target, single task auditory target and dual-task auditory
target, respectively. For the four conditions, the standard
deviation of the AUC is 0.090, 0.083, 0.071 and 0.067. The
performance based on the AUC is resumed in Figure 1(b).
These results show that it is possible to classify visual and
auditory targets during single and dual-task. A pairwise t-test
comparison indicates that there is no difference between the
single and dual-task for visual target detection. For the au-
ditory target detection, a pairwise one-tail t-test comparison
shows that the single task provides a better target detection
than with the dual-task (t15 = 3.37, p = 0.0021).

The average spatial distribution of each type of target
detection and for each condition is shown in Figure 3. For the
detection of visual targets, the activity is principally located
in the occipito-parietal area. In the single task condition, the
activity is higher in the right occipital area compared to the
dual-task where the activity is more centered around PZ . The
activity related to the detection of auditory targets is present
in the fronto-central area in the single task condition. In the
dual-task, the activity is spread across the centro-parietal
area. The difference between the single task and dual-task
condition is more important in the auditory target detection,
explaining the difference of accuracy between the conditions.
The low difference for the visual tasks confirms the previous
results showing no difference between single and dual-task.

IV. DISCUSSION AND CONCLUSION

The presented method for target detection has been suc-
cessfully evaluated on two different stimuli: visual and
auditory. In every case, the AUC is superior to 0.75, proving
that it is possible to detect a target relatively efficiently with
a single trial of EEG activity. In the dual-task condition,
the visual and auditory tasks had the same priority and we
could have expected the same results as with the single task.
However, visual target detection was a difficult task due to
the high level of noise that was included in the images.
The simultaneous auditory target detection had no impact
on the visual target detection in the dual-task condition. For
both the behavioral and single trial detection, there is no
difference between single and dual-task. Yet, in the auditory
task performance was degraded under dual-task conditions.
Hence, single trial detection with EEG signal can be used
as an efficient proxy for monitoring the performance of a
subject between single and dual-task.

Transferring BCI paradigms outside of the laboratory
while keeping a high reliability is a challenge. It is not only
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Fig. 2. ROC curves (the bold curve represents the mean across subjects).
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Fig. 3. Spatial distribution of the ERP based on the xDAWN algorithm [11]. (the red/blue color denotes a high/low activity.)

due to the material (EEG cap, amplifier) but also to the use of
such system in real condition where the user has to achieve
several tasks simultaneously. The present results underscore
the importance of considering the real-world psychological
context when evaluating the performance of any BCI. For
instance, dual-task models and experiments may explain the
differences between copy spelling and free spelling in some
BCI spellers.

The present results not only have implications for the
evaluations of BCIs designed to help disabled persons, but
also for BCIs designed to enhance performance of healthy
users. For example, BCIs have been developed for target
detection is for detecting potential threats like in satellite
images [14], [15], [16]. BCI could complement other com-
munication devices, but only if these other tasks do not
impair BCI performance. The present results suggest that
these BCIs may be impacted if users are also engaged in
other tasks. Future work is needed to define which BCI tasks
are most robust to dual-task interference and changes in task
difficulty. Further works will deal with the evaluation of the
task difficulty and its impact on the EEG classification in
dual-task conditions.
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