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Abstract— Co-adaptation between the human brain and
computers is an important issue in brain-computer interface
(BCI) research. However, most of the research has focused
on the computer side of BCI, such as developing powerful
machine-learning algorithms, while less research has focused on
investigating how BCI users may optimally adapt. This paper
assesses the influences of positive and negative visual feedback
on motor imagery (MI) skills by evaluating the performance.
More precisely, a MI based BCI paradigm was employed with
fake visual feedback, regardless of subjects’ real performance.
Subjects were exposed to two experimental conditions –one
positive and one negative, in which 80% or 30% of the trials
were associated with positive feedback, respectively. The main
EEG feature for MI-BCI classification –the asymmetry of
mu-rhythm between hemispheres– was more prominent only
after the negative feedback session. In addition, the negative
feedback condition was accompanied by larger heart rate
variability compared to the positive feedback condition. Our
results suggest that visual feedback is an important aspect to
take into account when designing BCI skill acquisition sessions.

I. INTRODUCTION

Brain computer interfaces (BCIs) are direct communica-
tion channels between the neural activity generated by the
brain and the outside world [1]. The modulation of mu
rhythm (8-12Hz rhythmic brain activity over the sensorimo-
tor areas) by motor imagery (MI) is an important feature
exploited in BCI systems [2]. Essentially, MI is based in
the mental rehearsal of a kinesthetic movement [3], [4];
when the subject imagines the movement of a certain limb,
the imagined movement induces a desynchronization of the
mu rhythm over the corresponding sub-regions within the
sensorimotor region. In practice, this desynchronization can
be detected and used for BCI control. MI-BCIs have been
used not only as assistive tools for severely disabled people,
but also as a new neural therapy for the restoration of motor
functions for stroke patients [2], [5].

It is well recognized that the co-adaptation between the
human brain and the computer is an important issue in BCI
research [6]. The closed-loop BCI system: the machine-
learning algorithms for detecting and recognizing different
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EEG patterns and their feedback, is built from this co-
adaptation between the human brain and the computer. Over
the last decade, researchers have developed a variety of
powerful EEG-specific algorithms which greatly enhanced
the performance of BCI systems [7], [8]. In contrast, little
is known about the influence of feedback on BCIs [9],
[10], even though it is well accepted that BCI skills require
feedback to optimize performance [1]. Feedback design, in
the case of the MI-BCI, is particularly critical since MI-
BCI requires relatively longer training time than other BCI
paradigms such as the SSVEP or P300. Additionally, the
experience of MI-BCI is highly subject-specific.

In this paper, we investigate the influence of visual feed-
back on human response using the classical left/right hand
MI-BCI paradigm, the difference is that in this study subjects
were exposed to fake feedback –regardless of their real
performance. All subjects were exposed to the positive and
negative feedback conditions counterbalanced. Their EEG
and ECG were recorded for the evaluation of the BCI skill
level, mental status and stress level.

II. MATERIALS AND METHODS

A. Subjects

Eight subjects (4 men and 4 women), aged from 24 to 33
(mean 27), participated in this experiment as paid volunteers
(20 RMB / hour). All of them were naı̈ve to BCI experiments.

B. Experimental paradigm

One single trial followed the time line shown in Fig. 1.

Fig. 1. Graphical interface of one complete trial. 1) preparation cue (1
second); 2) task cue informing the subject to perform left hand MI task (4
seconds); 3) feedback (1 second), can be either positive (3.a) or negative
(3.b); 4) inter trial interval (3 seconds)

The subjects first viewed three white squares and were
required to fixate on the central square. The MI task instruc-
tion of the trial was given by highlighting in green either the
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left or the right square. The subjects were asked to imagine
their left or right hand moving –e.g. lifting heavy objects–
and to sustain their mental status for 4 seconds. After the
task execution, visual feedback was presented by a green
tick indicating the subject had completed the task correctly
or by a red cross informing the subject that his/her mental
status during the MI task was not successfully recognized. In
this study, the feedback was not associated with the subjects’
real performance but predetermined by the trial condition.

Two experimental conditions were run: one negative feed-
back condition (NFC) and one positive feedback condition
(PFC). Each condition consisted of three stages:

• Stage 1: 10 min. relaxation.
• Stage 2: 10 min. no feedback task with 66 trials.
• Stage 3: 10 minutes of PFC/NFC with 66 trials.
Stage 1 and 2 were the same for PFC and NFC. During

Stage 3, in the NFC 30% of the trials were followed by
positive feedback (green ticks), while in the PFC 80% of the
trials were followed by positive feedback.

C. Procedure

The presentation order of the negative and positive feed-
back conditions were counterbalanced across subjects.

Subjects were told that the purpose of the study was to
evaluate two BCI algorithms and that they would repeat
the experiment twice –the two conditions–. Subjects were
informed that there may be possible performance differences
due to the change of algorithms. Subjects were told that
stages 1 and 2 would be used for the calculation of their
specific parameters, which would then be used in Stage 3
to generate the trial-by-trial feedback. That is, in Stage 3
subjects expected their real BCI performance as feedback;
however, in reality the subjects were receiving predefined
feedback. None of the subjects realized that the feedback
was fake.

D. EEG and ECG recording

The NeuroScan SynAmp II amplifier with a setup of 32
channels was used for the EEG recording; 1 bipolar electrode
pair was placed in both wrists of the subjects for the ECG
recording. The sampling rate was 1000Hz.

E. Data Analysis

The mental stress level of subjects was assessed using
time domain analysis by analyzing the 10 minutes of ECG
data and calculating the heart rate variability (HRV) dur-
ing each experimental stage [11]. Time-domain analysis
was computed from the standard deviation of NN-intervals
(SDNN). According to [12], SDNN decreases when subjects
are exposed to psychological stress. Inter-subject errors in
the statistics were avoided by normalizing the SDNN to the
baseline no feedback task (∆SDNN) as in (1):

∆SDNN = SDNNFeedback − SDDNNoFeedback (1)

In our case a negative ∆SDNN shows a decrease in
the SDNN when the feedback was given, and therefore a
more stressful situation. On the other hand, when a positive

∆SDNN appears the feedback condition is less stressful than
the no feedback condition.

The EEG data were input to an offline classification
procedure as described in [13]. Briefly described, a common
spatial pattern (CSP) algorithm was employed to find the
task-specific EEG features and a Fisher linear classifier was
used for classification. The reported classification accuracies
were calculated by a 5-fold cross validation. Subject-specific
frequency bands were calculated before running the offline
classifier.

To further analyze the trial-by-trial change for MI task per-
formance, as a quantitative index we analyzed the asymmetry
of mu-rhythm between hemispheres. Since the unbalance
between C3 and C4 has been regarded as the most important
feature for MI-BCI classification [2], [5], [7], the ratio
of 8-12Hz power at electrodes C3 and C4 was employed
as a simplified version of the unbalance. The modulation
strength can be defined as the asymmetry of the mu-energy
absolute values (uV) between hemispheres. The brain activity
collected by electrodes C3 and C4 cover the regions of
interest for motor imagery paradigms. Therefore, we define
(2) as:

S = |mu(C3)|/|mu(C4)| (2)

When performing a left-hand task, a larger S indicates
better execution of the task; whereas when performing a
right-hand task, a smaller S corresponds to better execution.
The linear correlation between a single-trial S and the trial
number was calculated in order to describe the trend of S
value changes over time within blocks.

F. Questionnaire

At the end of each condition the participants were asked to
answer the following questions on a scale from 1 (disagree
strongly) to 5 (agree strongly) concerning their level of
agreement with the following sentences:

1) control: During the experiment, my performance was
mainly good

2) disappointed: During the experiment, I felt disap-
pointed with my performance

3) confident: During the experiment, I felt confident with
my hand motor imagination strategy

4) stress: During the experiment, I was stressed
5) feedback: During the experiment, I preferred the no

feedback stage than the feedback stage

The control question was used as a consistency check
for each condition since we expected a higher score for the
PFC than for the NFC. The disappointed and the confident
questions studied the motivation effects of the PFC and NFC
on MI learning. For the PFC we hypothesized that subjects
would have lower scores in the second question and higher
scores in the third question. For the NFC we hypothesized
the opposite. No predictions were made for the stress and
feedback questions.
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III. RESULTS

A. Questionnaire

We performed an ANOVA test for differences on the
questionnaire data; the results are shown in Fig. 2 and
confirm our expectations. The control had a higher score
for the PFC than for the NFC (p=0.001). For the PFC a low
score in the disappointed (p=0.01) and a high score in the
confident (p=0.04) were found. For the NFC the scores were
the opposite, as expected. The stress result of 2.5 in both
PFC and NFC conditions indicated that the participants were
not stressed while performing MI-BCI. The feedback results
suggested that participants preferred the feedback condition
to the no feedback, even in the NFC (p=0.08).

Fig. 2. The questionnaire responses: 1(disagree strongly); 2(disagree
somewhat); 3(neither agree nor disagree); 4(agree somewhat); 5(agree
strongly)

B. EEG Analysis

1) BCI Performance: The BCI performance for all sub-
jects in the feedback and no feedback stages for both the
PFC and NFC conditions is shown in Table I.

TABLE I
BCI PERFORMANCE

ID C O No Feedback
Performance

Feedback Per-
formance

Performance
Difference

11 PFC 1 98.33% 92.00% -6.33
NFC 2 97.00% 92.00% -5.00

12 PFC 2 72.00% 66.00% -6.00
NFC 1 61.00% 62.67% 1.67

13 PFC 1 81.33% 72.33% -9
NFC 2 71.33% 78.67% 13.66

14 PFC 2 78.00% 79.00% 1.00
NFC 1 72.33% 74.00% 1.67

21 PFC 1 85.67% 74.00% -11.67
NFC 2 93.33% 85.33% -8.00

22 PFC 2 91.00% 92.67% 1.67
NFC 1 88.67% 89.00% 0.33

23 PFC 1 90.00% 79.67% -10.33
NFC 2 79.67% 93.33% 7.34

24 PFC 2 79.67% 83.67% 4.00
NFC 1 83.00% 78.00% -5.00

ID: subject number; C: condition PFC (positive feedback condition) NFC
(negative feedback condition); O: order of the repetition

To calculate each condition’s learning effects, each sub-
ject’s performance was normalized to his/her no feedback

performance. The normalized results suggest that, after com-
pleting the first condition (either PFC or NFC), subjects
who were exposed to the PFC first, performed significantly
worse -suggesting that there was a negative learning effect-
than subjects exposed to the NFC (ANOVA, p=0.003). When
comparing the normalized average performance of subjects
during the PFC to the NFC, regardless of trial order, we
find a slight trend showing that participants performed better
when given NFC (ANOVA, p=0.122). We found no order
effects when comparing the overall performance of subjects
who were first exposed to the NFC and then to the PFC
compared to subjects performing PFC first and then NFC
(ANOVA, p=0.318).

2) Mu-rhythm Tendency: In Fig. 3 we can observe the
increasing trend of the S value –the mu-Rhythm modulation
strength– for Subject 11 while performing the NFC with the
left hand (correlation r =0.14).

Fig. 3. Mu-rhythm improvement for subject 11 while performing NFC
with the left hand.

The global tendencies of the left hand linear correlations
can be observed in Fig. 4. A strong trend between linear
correlations for the left hand between PFC and NFC indicate
that the S values -the modulation strengths- went more
positive when the subjects were in the NFC, and thus, that
the NFC had greater learning effects (ANOVA, p=0.06).
No significant trends were found for the right hand. No
significant learning effects were found for the no feedback
stage.

Fig. 4. Linear correlations of the S values for the left hand when in the
PFC, the No feedback and the NFC. Each thin line represents the mu-
tendency for one subject while performing left hand motor imagery. The
mean tendency for each condition is represented as a thicker line.
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C. HRV

In the PFC the ∆SDNN was of −2.2 ± 16.3ms, i.e. the
HRV decreased compared to the no feedback task; in the
NFC the task ∆SDNN was of 15.4 ± 18.49ms, i.e. the
HRV increased compared to the no feedback task. The NFC
had a larger HRV compared to the PFC with a significant
difference (ANOVA, p=0.006). That is, the PFC generated a
more stressful situation than the NFC [11].

IV. DISCUSSION

The length of time required to train subjects in MI-BCI
is a major concern of many researchers [14]. Thus, it is
important to focus research efforts on one key aspect of the
learning process: the feedback. In [15], authors investigated
how instantaneous, delayed or nonexistent feedback affected
EEG control; reporting that feedback can have different
effects on EEG control, and that it varies across subjects.
Our experiment goes one step further and studies the effects
of positive versus negative visual feedback for naı̈ve subjects.

Results indicate greater learning effects when performing
the MI-BCI with negative feedback than with positive feed-
back, both for the mu-rhythm tendency (ANOVA, p=0.06)
and BCI performance (ANOVA, p=0.003). We suspect that
the visual feedback encouraged subject to try harder in the
NFC, thus participants improved their performance when the
feedback informed them that they were not performing well.
One interesting finding is that the learning effect of the NFC
for the mu-rhythm was only found significant on the left
hand. We speculate that this may be related to the handedness
of the subjects since all but one were right handed.

HRV results show a higher level of stress during the
PFC compared to the NFC. Nevertheless in the experience
questionnaires all subjects reported low levels of stress while
performing MI-BCI.

Overall, the results are promising even though the study
was limited to only 8 subjects. Moreover, the learning
period consisted only of two MI-BCI experiences per subject.
Further studies with larger populations and longer learning
periods may clarify these trends.

V. CONCLUSIONS

We have investigated feedback and mental stress of the
participants aiming to improve the MI-BCI learning method-
ology. Negative feedback was found to have greater learning
effects for MI-BCI than positive feedback. We believe that
these results may only apply for non-experience subjects in
their first MI-BCI sessions, since longer periods of neg-
ative feedback training may lead to frustration. Previous
experiments with biased feedback [9], have shown that non-
naı̈ve subjects who are already capable of modulating their
sensorimotor rhythm, drop their performance when exposed
to inaccurate feedback. However our experiment evaluated
non-experienced subjects and our results suggest that the
sham feedback may shorten learning periods when beginning
to train MI-BCI.

HRV –our measure of mental stress of participants– was
found lower in the PFC. We speculate that this effect may

be caused by the initial euphoria of the non-experienced
subjects when seeing that they are doing well. It would be
interesting to see if through a larger number of sessions if
this HRV effect would vary in favor of the PFC; while the
NFC, although it produces better results in the beginning,
may lead to higher disappointment and stress.

There are several applications of these results. First of
all we speculate that these findings may serve to improve
current MI-BCI learning methodology and help systems
to adapt in better ways to a subject’s needs. The second
application is in the general area of BCI medical treatments:
the fact that only non-experienced subjects participated in our
experiment confers that this research has a greater interest
with positive benefits for MI-BCI during rehabilitation or
medical treatment, where most of the patients are naı̈ve to
these therapies and have not yet developed MI skills.
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