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Abstract—Being noninvasive, low-risk and inexpensive, EEG is 
a promising methodology in the application of human Brain 
Computer Interface (BCI) to help those with motor 
dysfunctions. Here we employed a center-out task paradigm to 
study the decoding of hand velocity in the EEG recording. We 
tested the hypothesis using a linear regression model and found 
a significant correlation between velocity and the low-pass 
filtered EEG signal (<2 Hz). The low-pass filtered EEG was not 
only tuned to the direction but also phase-locked to the 
amplitude of velocity. This suggests an EEG form of the 
neuronal population vector theory, which is considered to 
encode limb kinematic information, and provides a new 
method of BCI implementation.  

I. INTRODUCTION  
T has long been proven that the neuronal activity achieved 
by invasive recording methodologies contains limb 

kinematic information [1][2]. This has prompted the 
implementation of refined Brain Computer Interface (BCI) 
systems in animal studies [3]. Although impeded by its low 
spatial resolution and signal-noise ratio, EEG is promising in 
human applications for its noninvasive advantages such as 
reliability, low risk and cost. Thus, work in EEG-based BCI 
has gained intense attention in the past decades. It has been 
found that modulation of sensory-motor rhythms (SMR) 
such as event-related synchronization or desynchronization 
(ERS/ERD) can be implemented by subjects performing 
certain types of motor imagery tasks [4]-[7]. Advanced EEG 
based BCI systems have been demonstrated in 3D movement 
control [8][9]. However, as a representation of the 
underlying neuronal activity, which encodes the direction 
and speed of movement [1], EEG should carry richer 
information beyond the scope of event-related patterns. 

Here, we employed a center-out reaching task to 
investigate the relationship between the EEG signal and hand 
velocity using a linear multiple regression model and 
explored the temporal processes of EEG, which may co-vary 
with that of velocity.  

II. MATERIALS AND METHODS 

A. Experiments 

Four healthy subjects (three female and one male) 
between the ages of 20 and 24 years old were recruited in 
this study. The study protocol was approved by the 
Institutional Review Board of the University of Minnesota. 
Informed consent was obtained from all subjects prior to the 
study. 

Subjects sat comfortably in front of a cuboid structure 
and were instructed to perform the center-out task to reach 
the targets distributed at the eight corners of the cuboid (Fig. 
1A). Each run was composed of 16 trials, which were 
equally and randomly arranged among the eight targets. 
During each trial, subjects began with a rest period with their 
right forearm in the center of the cuboid and focusing on a 
fixation in the middle of the screen. After 3 s, the target was 
presented in one of the corners while the subjects were 
indicated by a countdown sequence to prepare for movement 
initiation. Following another 4.5 s, the countdown sequence 
disappeared and a beeping sound directed the subject to 
move their hand toward the target. In order to synchronize 
the movements across trials, a second beep was used after 
another 1.5 s to mark the time when the subject should reach 
the target. Once the subjects had reached the target, they 
moved their hand back toward the center to finish the trial 
while a third beep sounded 1.5 s after the second beep. The 
experimental paradigm is shown in Fig. 1. At least 50 trials 
per target were conducted for each subject. 

 

Figure 1.  (A) Top: the continuous timing of events in a trial; bottom: an 
illustration of the hand trajectory during one trial. X, Y and Z show the 
positive direction of the movement within the space. (B) The distribution of 
electrodes on the EEG cap. The red box shows the motor area and the 
electrodes within this area. 

The EEG data was collected using a 68-channel cap and 
SynAmps2 amplifier (Neuroscan Compumedics) at a 
sampling rate of 1000 Hz. Among the 68 available electrodes, 
62 were used as signal channels and two channels recorded 
EOG activities for later ocular correction Hand movement 
was recorded using a Polaris Vicra system (Northern Digital 
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Inc) at a sampling rate of 20 Hz. Both data streams were 
synchronized by a control computer for future analysis. 

B. Data processing 
Hand movements were visually inspected to reject trials 

with unexpected movement. The continuous EEG data was 
preprocessed to remove the effect caused by eye blinks and 
movements [10] and the common average of all electrodes 
was removed from each electrode. The EEG data were then 
filtered between 0.05 and 70 Hz and resampled at a rate of 
200 Hz. These EEG preprocessing procedures were 
accomplished using Analyzer 2 software (Brain Products). 
Baseline periods were chosen as the time when the fixation 
screen was presented. To reduce the effect caused by the 
baseline drift, the mean of the baseline period of each trial 
was subtracted from the EEG of that trial. 

C. Decoding model 
A linear multiple regression model was used to decode 

the relation between velocity and EEG [11][12]. The model 
is described in equations (1) ~ (3). 
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Here, )(tVx , )(tVy  and )(tVz  are the velocities at time 
t in the X-, Y- and Z- directions, respectively, calculated as 
the difference between the hand position at t and t-1; xa , 

ya  and za are constants; xikb , yikb  and zikb are the 
regression coefficients of electrode i at time lag k  for the X-, 
Y- and Z-directions, respectively; )(tSi  is the EEG 
potential of electrode i at time t (potentials with a time lag 
between 0 and 19 were used for decoding); the number 21 is 
the number of electrodes used here which cover the motor 
area (Fig. 1B). 

D. Data analysis 
To prevent an overfitting of the model, we carried out a 

10-fold cross-validation in which the data were divided into 
10 “folds.” For each turn, nine folds were used as the 
training set for calculating the model coefficients while the 
remaining fold was used as a testing set. The decoded 
velocity and actual velocity in the testing set were compared 
by their squared correlation coefficients (r2). Higher r2 values 
were interpreted as better decoding performances. 

We induced two control groups of EEG data to 
strengthen the conclusion made from the values of r2. The 
first group was defined as “trial-shuffled EEG” in which the 
original EEG data from different trials were shuffled. The 
second group was defined as “phase-shuffled EEG” and was 
formed by shuffling the phase of each Fourier component 
within the trials. Comparing the r2 between the actual EEG 
and control EEG allowed us to evaluate the decoding 
capability of the data. 

The EEG was filtered using a zero-phase shift filter in 
several frequency bands: the lower δ band (<2 Hz), upper δ 
band (2~4 Hz), θ band (4~7 Hz), α band (8~12 Hz), β band 
(12~30 Hz) and γ band (> 30 Hz). Decoding was performed 
on the EEG signal in these bands to evaluate the decoding 
capability separately. 

We aligned the EEG according to the onset of hand 
movement and averaged out those with the same target in the 
frequency band with the highest r2. We compared the trial-
averaged EEG signal with the time profile of speed in each 
direction to discover whether there were any temporal 
patterns phase-locked to that of speed. 

III. RESULTS 

A. Decoding of velocity in different frequency bands 

 

Figure 2.  Comparison of the decoding perfomance between the actual 
EEG data and the shuffled EEG in the lower δ band (<2 Hz). (A)~(D) The 
squared correlation coefficients of four subjects in the X-, Y- and Z-
directions: original EEG (blue), phase-shuffled EEG (green) and trial-
shuffled EEG (red). Error bar: the standard deviation of the correlation 
coefficient across folds of the cross-validation. (E) The comparison 
between the raw velocity and the reconstructed velocity of the subject 
shown in panel (B) decoded using the lower δ band EEG. Velocities of X-, 
Y- and Z-directions are from the left to the right, respectively.  
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In all four subjects, the lower δ band EEG signal 
contributed significantly to the decoding of velocity. The r2 
in the X-, Y- and Z-directions were all significantly higher 
than those of the trial-shuffled decoding (p<10-8; Fig. 2). For 
subjects A-C, the Y-direction, i.e. the left-right direction, 
displayed higher r2 than the other two directions. The highest 
observed r2 was 0.76. 

The higher frequency bands, from upper δ to γ, exhibited 
poor decoding ability. The absolute ranges of r2 were low 
compared to those of the lower δ band. Most did not show a 
significant difference from the trial-shuffled control group 
(Fig. 3). 

 

Figure 3.  Comparison of the decoding perfomance between the actual 
EEG data and the trial-shuffled EEG in the upper δ, θ, α, β and γ bands. 
(A)~(D) The squared correlation coefficients of four subjects in the X-, Y- 
and Z-directions: original EEG (blue) and trial-shuffled EEG (red). The bar 
graph repeats in the order from upper δ to γ bands for each subject. Error 
bar: the standard deviation of the correlation coefficient across folds of the 
cross-validation. 

B. Phase-locking pattern  in the lower δ band 
As shown in Fig. 2, the phase-shuffled EEG group 

significantly reduced the r2 in all directions of all subjects in 
the lower δ band (p<10-11). This suggests that the phase 
information within the lower δ band EEG is important for 
decoding velocity. We did not provide the phase-shuffled 
group for other frequency bands (Fig. 3) because of the 
correspondingly poor decoding of the original EEG. 

IV. DISCUSSION 
A significant correlation and phase locking between the 

velocity time course and lower δ band EEG signal (<2 Hz) 
are revealed in this paper. In the current study, the spectral 
power of hand velocity was within the range of the lower δ 
band. Moran et al. [1] has reported that the speed profile is 
highly correlated with the averaged firing rate of neuronal 
populations using the method of single-neuron recording in 
nonhuman primates. More recently it has been reported by 
Jerbi et al. [13] that the low frequency MEG is phase-locked 
to hand kinematics. These findings raise the hypothesis that 
the lower δ EEG is the equivalence of the summation of 
related motor cortex activities. 

Event-related desynchronization or synchronization 
(ERD/ERS) [14][15] has been widely accepted as the 

indication of motor activation or deactivation and has been 
used in BCI applications. Although the spatio-temporal 
patterns of this low frequency EEG signal resemble 
ERD/ERS and both convey limb kinematics [16], it is not 
clear whether they originate from the same neuronal 
substrate since ERD/ERS is the change in frequency 
spectrum primarily found in α and β bands and no evidence 
has directly linked them together. Moreover, the low 
frequency EEG carries more information than the 
contralaterality-related brain function as shown by the X- 
and Z-direction decoding.  

In summary, our findings suggest that limb kinematics 
may be decoded in the temporal processes of the low 
frequency EEG signal as an integrative representation of 
lower level neuronal activities. This may extend our 
understanding of the control signal used in BCI applications. 
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