
  

  

Abstract—Brain-computer interface (BCI) uses non-muscular 

channel of the nervous system for communication. Common 

Spatial Pattern (CSP) is a popular spatial filtering method used 

to reduce the effect of volume conduction on EEG signals. It is 

thought that CSP requires a large number of electrodes to be 

effective. Using a 20-session dataset of motor imagery BCI usage 

by 5 stroke patients, we demonstrated that after channel 

selection, CSP can still maintain a high accuracy with low 

number of electrodes using a newly proposed channel selection 

method called CSP-rank (higher than 90% with 8 electrodes).  

The results showed that using only the first session for channel 

selection, a high accuracy can be maintained in subsequent 

sessions. CSP-rank has been compared to the popular support 

vector machine recursive feature elimination (SVM-RFE). The 

results showed that the CSP-rank required less electrodes to 

maintain accuracy higher than 90% (a minimum of 8 compared 

to 12 of SVM-RFE) and it attained a higher maximum accuracy 

(91.7% compared with 90.7% of SVM-RFE). This could 

support clinicians to apply more BCI in routine rehabilitation.  

I. INTRODUCTION 

Brain-computer interface uses non-muscular channel of the 

nervous system to communicate with the outside world [1]. It 

allows total lock-in patient to communicate with the others. 

Recently it has been applied in rehabilitation [2]. Common 

spatial pattern (CSP) is a popular spatial filtering method in 

brain-computer interface (BCI). Due to the volume 

conduction property of EEG signal, signals recorded at the 

scalp are often “smeared” and have a low spatial resolution 

[3]. There are quite a few spatial filters available (e.g. 

common average reference, Laplacian filter [1], linear inverse 

method [4]) to reduce this “smearing” effect. CSP receives 

special appeal because one of its features is to increase the 

separation between filtered signals of different classes, and so 

it can enhance the classification performance. CSP tries to 

find a spatial filter that maximizes the difference in variance 

between two classes of data. This fits well with the operation 

of a motor imagery BCI, which is based on the modulation of 

the variance of EEG signal (i.e. the band power). 
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There is a common understanding that CSP can only be 

effective if there are large amount of electrodes available [5], 

[6], but using a large number of electrodes would imply 

longer time spent in channel preparation. It may also increase 

the cost of a BCI system as more amplifiers are needed. This 

will undermine the practical efficiency of using a BCI system. 

Several studies have used CSP as a channel selection method 

[6], [7], [8], but the performance of CSP under low number of 

electrode is seldom studied. The previous studies are also 

mainly focused on single session dataset. EEG signals tend to 

be non-stationary across different measuring sessions [9]. 

Whether the results obtained from one session of recording 

(as in [6]) can be applied to multiple sessions of data still 

needs to be further studied. 

In this study, we used a 20-session dataset of stroke 

patients using a motor imagery based BCI to show that the 

CSP-rank method, which is based on the sorting of CSP filter 

coefficients, was effective in reducing the number of 

electrodes. We provided evidence that CSP can still perform 

well using a low number of electrodes after simple channel 

selection. The results also showed that using only 1 

calibration session for channel selection, its results can be 

applied on the subsequent 19 sessions with high accuracy. A 

large number of electrodes can be reduced with only small 

impact in classification accuracy.  

II. METHODOLOGY 

A. Data description 

Five chronic stroke patients were recruited for the study (3 

females, 2 males. Age: 50.4±17.3. Affected side: 3L, 2R). 

They were instructed to sit in a comfortable chair in a sound 

proof room, facing a 17-inch screen. 64-channel EEG 

following the extended international 10-20 system was 
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Fig. 1. A photograph showing the set up of the BCI training with a 

chronic stroke patient 

 

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 6344

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



  

recorded from each patient using a Neuroscan Synamps2 

(Neuroscan Inc, Hernon, USA) and SCAN 4.3 software at 

250Hz. Electrode impedance was kept under 5k� . The 

experimental setup was shown in Fig. 1. 

The experiment followed the famous “basket-paradigm”. A 

diagram showing the paradigm was shown in  Fig. 2.  First a 

“+” sign was shown on the screen for 3s. After that, a blue 

basket was displayed on the screen, on the same side as the 

affected side of the patient. The patients were asked to 

perform motor imagery on their affected side (the MI phase). 

A feedback ball moved from the bottom to the top of the 

screen at uniform speed in 5.6s. If the EEG signal was 

classified as motor imagery, then the feedback ball would 

move horizontally towards the affected side of the subject, 

 

   
Fig. 2. Experimental paradigm showing 1 trial of the BCI experiment 

 

otherwise it moved to the opposite side. Further details of the 

online classification were given at [10]. If the feedback ball 

hit the basket, functional electrical stimulation (FES) would 

be applied on extensor carpi radialis of the subject for 5s to 

extend the finger for hand opening exercise. Otherwise, an 

encouragement text will be shown for 3s. The subject would 

then be allowed to rest for 4s. After that, he was asked to 

remain stationary for 5.6s without any motor imagery (the 

Immobilization phase). The classification task was to 

distinguish the EEG signal during motor imagery (MI) and 

that during the Immobilization phase. One BCI session 

consisted of 80 trials. Each trial contained data from both 

classes (i.e. MI and Immobilization phase). 

B. Common spatial pattern 

Algorithm for common spatial pattern is given below [3], 

[11] :  

For two signal matrices, �� of class 1 and �� of class 2,  

where column is channel, the covariance matrices are given 

by: 
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The average covariance �����������������  are obtained by 

averaging the covariance matrices ���������over all the 

trials of the respective class.  

Perform Eigen vector decomposition (EVD) on the sum of 

average covariance: 
� � �� � �� � �����

� ����

where �� is the matrix of eigen vectors and � the diagonal 

matrix of eigenvalues. Find the whitening transform matrix: 
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Then transform the covariance matrices: 
�� � ��������

��������������� � ��������
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Do EVD again: 
�� � ����

����������� � ����
� 

�� and ��� share common eigenvectors, so �� � �� � � 

Since �� � �� � ��, the eigenvector corresponding to the 

largest eigenvalue in �� will have the smallest eigenvalue in 

��, and vice versa. The 2 eigenvectors corresponding to the 

largest eigenvalue in ���������  are extracted. They are 

called ����������respectively 

The spatial filter can be found by: 
� � � ����������������� � � ��� 

Then the signal matrix can be projected by  
!� � � �������������!� � � ���

where�!������!��are filtered feature vector for class 1 and 2 

respectively. 

C. Channel selection methods 

1) CSP-rank method 

A method called CSP-rank based on the sorting of CSP 

filter was proposed. The CSP algorithm produced two spatial 

filters SF1 and SF2 (the eigenvectors that correspond to the 

largest and smallest eigenvalue respectively) for class 1 and 2 

respectively. They are the spatial filter coefficients to 

generate two new filtered signals from the original EEG 

signal.  

Another way to look that these filter coefficients is that 

they assign different weights to different electrodes based on 

their importance. If the coefficient of a particular electrode is 

large, then that means the electrode will contribute more to 

the resulting filtered signal and hence it is more important. 

Conversely, removing the electrode with a small coefficient 

has less effect on the resulting signal due to its smaller 

contribution. The CSP-rank method first sorted the absolute 

value of the filter coefficients in each filter respectively, then 

take the electrode with the next largest coefficient in turn 

from the two spatial filters (e.g. take the first electrode from 

the sorted SF1, second from SF2, third from SF1 again etc.). If 

an electrode is already taken, then simply move on to the next 

coefficient in the same spatial filter until a new electrode is 

reached. 

2) Support-vector machine recursive feature elimination 

(SVM-REF) 

Support vector machine (SVM) tries to search for a 

hyperplane that maximize the margin between the support 

vectors of 2 classes. For a soft-margin SVM that 

accommodate non-linearly separable cases, it tries to solve 

the following optimization problem [12], [13]: 
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For training sample "# $ %
& ' ( � �' )' * ' �, where + is the 

total number of training samples, each with a class label 

,- $ .�' /�0  where 1 $ %2. d is the number of features in 

each sample.  iξ  is the slack variable. It allows some samples 

to be in the margin or misclassified just in case they are not 

linear separable. C is the soft margin constant that determines 

how tolerant the classifier is to misclassified or margin errors.  
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For channel selection, the ranking score of a channel is given 

by [14], [15]: 
2)( jj wR =

   (9)
 

where 34 is the weight for channel j in the projection vector w 

returned by the SVM algorithm. In each iteration, the channel 

with the lowest ranking score is eliminated from the training  

samples. Then SVM is applied to the sample again to generate 

a new projection vector w. The process continues until there 

is only one channel left. In this study, LIBSVM [16], a 

library�for support vector machines developed at the National 

Taiwan University, was used for the SVM training. Model 

selection of parameter C in equation (2) was done by a 

10-fold cross-validation with the training data. The value of C 

that gave the highest validation accuracy was chosen.�
�

3) Random selection 

The electrodes are just ranked randomly in Random selection 

to act as a control for comparison.  

D. Signal processing and cross-validation 

There were totally 20 sessions of BCI data. Each session 

was carried out on a different day. For each subject, all trials 

in the first day of training were used for channel selection.  

The trials were first band-pass filtered between 8-12Hz and 

then fed into the different channel selection algorithms. For 

SVM-RFE, the log-variance of each channel was used as the 

feature. After channel selection, a list of channel sorted by 

their importance in channel selection was obtained.  

Assuming the list was sorted in descending order of 

importance, using the first N (N ranged from 2 to 50, at a step 

of 2) channel only, classification and 10-fold cross-validation 

was done on all subsequent BCI session (i.e. day 2 to day 20). 

For each subsequent BCI session, its 80 trials were divided 

into 10-blocks. Each block respectively acted as the testing 

set and the rest acted as the training set. For the training set, 

the data was first filtered between 8-12Hz, in the mu-rhythm 

band [17]. A CSP filter was trained and then applied on the 

data, and then a Fisher’s Linear Discriminant (FLD) was 

trained on the log-variance of the spatially filtered signal. The 

trained spatial filter and classifier are then used to classify the 

testing set. Accuracies from all folds of the validation were 

averaged. Finally, a grand average of accuracy is obtained by 

averaging the accuracy across the sessions (session 2 to 

session 20) and all the subjects. 

III. RESULTS 

The paired t-test was used to compare the accuracy 

between different methods at different number of electrodes. 

The number of electrodes that showed statistical difference 

(p<0.05) between CSP-rank or SVM-RFE against Random 

selection was marked in Fig. 3. Statistical difference can be 

observed between 14 to 26 electrodes. There was no 

statistical difference between CSP-rank and SVM-RFE.  

The relation between the average classification accuracy 

and number of electrodes was shown in Fig. 3. CSP-rank and 

SVM-RFE had better performance than Random at nearly all 

number of electrodes. Surprisingly, Random selection was 

able to obtain accuracy as high as 89.6%, although using 

more electrodes. Even at 10 electrodes, its accuracy was still 

above 85%. However, when the number of electrode dropped 

below 10, the accuracy rapidly deteriorated.  

Accuracy above 90% was maintained by CSP-rank for 

8-38 electrodes, while SVM-RFE needed 12-28 electrodes. 

Both methods showed a tendency to produce higher accuracy 

when the number of electrodes was reduced from the 

maximum. They reached a peak in performance when the 

number of electrodes was between 10-20. When the number 

of electrodes was reduced below 8, the accuracy started to 

drop quickly.  However, it should be noted that there was no 

similar trend in the Random selection method. Its accuracy 

remains relatively stable from 10 to 50 electrodes. 

CSP-rank obtained the highest accuracy of 91.7% with 22 

electrodes. SVM-RFE was able to obtain the highest of 90.7% 

with 14 electrodes. The random methods require a number as 

large as 32 to attain its maximum 89.6% accuracy.  

IV. DISCUSSION 

Our findings showed a smaller set of EEG electrodes with 

CSP could be applied for BCI. It was demonstrated with 

20-session training on stroke patients. There is a common 

understanding among the BCI field that CSP requires a large 

number of electrodes to be effective. Several studies have 

used CSP as a channel selection method [6], [7], [8], [18]  but 

usually in their assessment of classification accuracy, CSP 

was not used (except in [18], but [18] only used a fixed 

number of electrodes). The performance of CSP under lower 

channel count is not thoroughly examined. We used a 

20-session BCI dataset from stroke patients to show that CSP 

could still maintain a high performance even with a low 

number of electrodes. Our study has used multiple BCI 

sessions to investigate the effect of channel selection, unlike 

most studies which only rely on cross-validation of a single 

Fig. 3. Relation between the average classification accuracy and the 

number of electrodes for different channel selection algorithms. The 

number of electrodes showing statistical difference between CSP-rank 

and Random, SVM-RFE and Random was marked with asterisk and 

triangle respectively. The point of 90% accuracy was marked with a 

horizontal line. 
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session dataset. We showed that channel selection was 

effective despite the non-stationarity of EEG. 

Our results showed that having more electrodes did not 

necessarily mean higher accuracy. This contrasts with the 

common standpoint that CSP requires large number of 

electrode to be effective. Both CSP-rank and SVM-RFE had 

the tendency to produce higher accuracy when the number of 

electrodes was reduced. This is consistent with previous 

studies as CSP was reported to have a high tendency to 

over-fit [19]. CSP was sensitive to artifact [9], [20]. 

Removing noisy channel can relieve the effect of over-fitting 

and artifact contamination. Statistical difference between 

specialized channel selection method and Random selection 

have been observed between 14 to 26 electrodes, suggesting 

that channel selection would be most effective among this 

range of electrodes.  

CSP-rank had several advantages over SVM-RFE. At 

minimum, CSP-rank only required 8 electrodes to keep the 

classification above 90%, but SVM-RFE needed at least 12. 

The maximum accuracy obtained by CSP-rank was also 

higher. Computationally CSP-rank has major advantage over 

SVM-RFE as it is not a recursive method. Results can be 

obtained almost instantaneously. This feature allows 

CSP-rank to be embedded in the real-time signal processing 

pipeline and remove the channel not useful for channel 

selection. This can reduce the chance of over-fitting. The 

effectiveness of this approach in real-time processing will be 

addressed in future studies. 

Our results suggested that although EEG signals are 

non-stationary, the location of the electrode important for 

classification was relatively stable across sessions. We 

performed the channel selection on the first BCI session and 

tested its performance on subsequent sessions. The average 

accuracy obtained in the testing sessions was very high (can 

be >90%), showing the spatial stability of the important 

channels. The high accuracy obtained by the Random 

selection method also showed that CSP was very capable to 

discriminate between two classes of motor imagery even 

given a random configuration of electrodes. 

The authors were well aware that using CSP-rank as 

channel selection and again using CSP in classification may 

lend to bias. However, given the popularity of CSP in motor 

imagery BCI, this should be considered as one of the feature 

why CSP-rank is preferable. The tight integration between 

channel selection and spatial filter can lead to increased 

performance. 

V. CONCLUSION 

Using a 20-session dataset, our results showed that CSP 

can still maintain a high accuracy under low number of 

electrodes after channel selection.  The results of channel 

selection performed on the first calibration session for 

channel selection can be applied on subsequent sessions and 

maintain a high overall accuracy on chronic stroke patients. 

CSP-rank is a viable method for channel selection in motor 

imagery BCI using CSP. It required fewer electrodes and 

attained a higher accuracy compared with SVM-RFE. 

Generally, 8 electrodes were sufficient to maintain accuracy 

higher than 90%. 
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