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Abstract— This work presents a Brain-Computer Interface
(BCI) based on Steady State Visual Evoked Potentials (SSVEP),
using higher stimulus frequencies (>30 Hz). Using a statistical
test and a decision tree, the real-time EEG registers of six
volunteers are analyzed, with the classification result updated
each second. The BCI developed does not need any kind
of settings or adjustments, which makes it more general.
Offline results are presented, which corresponds to a correct
classification rate of up to 99% and a Information Transfer
Rate (ITR) of up to 114.2 bits/min.

I. INTRODUCTION

Communication can be defined as a process to express
and share experiences among people, where the machine
can be used as an accessory tool. A new trend for man-
machine interaction is use the brain signals to promote a
natural interface, which is named Brain-Computer Interface
(BCI). Among the paradigms used in a BCI development,
one has the Steady-State Visual Evoked Potentials (SSVEP).
It means that the fundamental frequency component (and its
harmonics) of a flickering visual stimulus will be present in
the ElectroEncephaloGram (EEG) signal of the stimulated
individual. The BCIs based on these potentials are called
SSVEP-BCI and the interest in developing such kind of BCI
is mainly due to the robustness of this phenomenon, since
this potential is an inherent response of the human brain.
This characteristic leads to a fast adaptation of the user to
operate the BCI [1], as well as allows to use a great number
of stimuli, obtaining a high Information Transfer Rate (ITR)
[2].

Several groups working on SSVEP-BCI use low and me-
dium ranges for the stimulus frequencies (<30 Hz) [1], [3],
[4], in which the SSVEP is more prominent [5]. At the same
time, this frequency range may cause some user discomfort,
and then a tiresome for a long time BCI operation. The
present work proposes to use the same structure of signal
analysis developed in [6] and [7], which was implemented
for low stimulus frequencies, and use it for a higher stimulus
frequency range.

Some works have used high frequencies for visual stimu-
lation, such as [8]. However, some adjustments are necessary
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for each volunteer using the BCI. In the present work neither
calibration nor baseline signal are required for the BCI
operation. The user has just to sit, wear the EEG acquiring
system, observe the stimuli and begin to operate the SSVEP-
BCI. The approaches used to identify the SSVEPs are a
statistical test, responsible for enhancing the evoked peaks,
and a decision tree, in charge of selecting the correct peaks
among the extracted ones. These topics are presented in the
following sections, as well as the database used, the results
found and the conclusions obtained.

II. DATABASE

Utilizing the same acquisition structure implemented in
[9], the volunteers sat on a comfortable chair in front of a
17-in CRT monitor with four bars on each side, as illustrated
in Fig. 1. These bars measure 10 cm x 2.5 cm and are
illuminated by high efficiency light-emitting diodes (LEDs).
The flickering frequencies were 37.0 Hz (top), 38.0 Hz
(right), 39.0 Hz (bottom) and 40.0 Hz (left), which are almost
imperceptible by the users. The LEDs flicker is precisely
controlled by an FPGA Xilinx Spartan2E.

Fig. 1. Acquisition system with four bars flickering simultaneously.

Six EEG channels, with the reference electrode at Fz,
grounded at linked A1-A2, sampled at 256 Hz, and with 3
to 100 Hz passband were recorded. Using the international
10-20 system, the locations for the electrodes are O1, Oz,
O2, P3, Pz and P4. The EEG signals were acquired in
GATEME/UNSJ (Argentina) with a Grass MP15 amplifiers
system and digitalized with a NI-DAQPad6015 and a notch
filter for 50 Hz was used, for line interference cancellation.

Six healthy volunteers, one female, 32±3 years old, named
Vol1 to Vol6, participated in this study. Each one was asked
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to watch a flickering bar during trials of 10 s. The trial
begins with a beep, in t=0 s, and a flickering bar is randomly
indicated 2 s later using an arrow shown on the screen.
All volunteers participated in four sessions and each session
contains 20 trials, with a resting interval of a few minutes
between sessions and a few seconds between trials.

III. FEATURE EXTRACTION

To evaluate syncronyzed spectral changes in the EEG
signal recorded during stimulation, x[k], at a given stimulus
frequency, f0, a Spectral F-Test (SFT) is applied as the ratio
between the power in such frequency and the average power
in L even neighboring frequencies [10]. That is,

φ̂x(f0) =
Pxx(f0)

1
L

i=L/2∑
i=−L/2
i �=0

Pxx(fi)

(1)

where Pxx(f0) is the Power Spectral Density (PSD) of the
signal x[k] evaluated at the frequency f0, and Pxx(fi) are
the PSD values at the L neighboring frequencies closest to
f0.

This statistic test has the purpose of determining whether
the spectrum at the frequency f0 is statistically distinct
from its neighbors, considering that the spectrum in this
neighborhood is white. Equation (1) is also used in [11]
to evaluate the Signal-to-Noise Ratio (SNR) of SSVEPs.
This was used to help in the choice of the best values of
stimulus frequencies. Here, this expression is used to detect
the evoked peaks that are rejected by the null hypothesis,
H0, which corresponds to the absence of evoked response.
The alternative hypothesis is that the null hypothesis is false,
that is, there is evoked response. Under the null hypothesis,
φ̂x(f) is distributed as [10]

φ̂x(f0)
∣∣∣
H0

∼ F2,2L, (2)

where F2,2L is the F distribution with 2 and 2L degrees of
freedom. Consequently, H0 is rejected (α = 0.05) using the
critical value given by

STFcrit = F(2,2L,α). (3)

It can be noticed that this last critical value is independent
of the length of the analyzed data segment. This lead to a
robust threshold to identify the evoked peaks.

IV. RULE-BASED CLASSIFIER

From the F -test developed in Section III, the input pa-
rameters of the classifier should be related to peaks that
overshoot the SFTcrit value. Considering that there is no
metric for the points which is desired to classify, the classifier
chosen is based on decision trees. Thus, the parameters were
defined as the amplitude of these peaks and the associated
frequency value. These parameters are converted in attributes
capable of modeling the system suitably.

The decision tree implemented in this work is a little
different from the one used in [6]. Some considerations were
assumed to implement this new decision tree: (i) the stimulus
frequencies of 37.0, 38.0, 39.0 and 40.0 Hz were labeled as
Class 1 to Class 4, respectively; (ii) only the fundamental
component of each stimulus frequencies was used, since they
were in a high value range; (iii) as the sample frequency is
256 Hz, the PSD was estimated using a number of 1024
points, which leads to a frequency resolution of 256/1024 =
0.25 Hz, and; (iv) the exact value of the stimulus frequency
plus one point before and after of the exact value were
considered in the classification process. For instance, for a
stimulus frequency of 37.0 Hz the peaks on the points 36.75,
37.0 and 37.25 Hz were considered to compose the decision
tree. Then, two attributes concerning to the first twenty peaks
(if there is) that reject H0 were created.

The first attribute, A1, consists of four elements: (i)
the amplitude of the peak; (ii) the value of the frequency
where the peak occurred; (iii) the information whether this
frequency value corresponds or not to the exact value of
the stimulus frequency, and; (iv) the class associated to it.
If the value of the frequency does not belong to none of
the stimulus frequencies, the peak is labeled as an undefined
class X .

The second attribute, A2, is created from the first one,
and has two components related to the class labels different
than X . The first component is the information whether the
frequency value corresponds or not to the exact value of
the stimulus frequency, splitting the peaks in two groups
called Exact Group and Approximated Group. The second
component is the peaks ordered in a descending order with
respect to their amplitude values, which was performed for
the two groups of peaks.

The decision tree developed is shown in Fig. 2. The tree
will first search the maximum value for the peaks that belong
to the Exact Group and, if there is not a peak in this group,
it will search in the Approximated Group. Observe that when
the tree classifies the sample as belonging to the class X it
means that the sample was not classified. The training step is
unnecessary in this application because the classifier use is
straightforward. This represents a great advantage, because
the computational cost decreases.

Moreover, the Information Transfer Rate (ITR) is used
to measure the quantity of information transmitted per time
unit, and it can be determined using the accuracy and speed
of the BCI. This rate can be expressed as [12]

B = log2 N + P log2 P + (1 − P ) log2

(
1 − P

N − 1

)
,

where N is the number of classes and P is the rate of
correct classifications. The unit for ITR is bits/s and can
be determined in bits/min multiplying the result by the
selection speed, that is, how many selections can be done
by the system in a minute.
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Fig. 2. Decision tree developed.

V. RESULTS

The trials correspondent to each stimulus frequency were
concatenated to compose a vector of 200 s of EEG signal.
The composed signals of the six channels were spatially filte-
red using the Common Average Reference (CAR) method. In
the CAR, the average value of the entire electrode montage
(the common average) is subtracted from the one of the
channel of interest [13]. That is,

uCAR
i = uRE

i − 1
n

n∑
j=1

uRE
j , (4)

onde uRE
i is the potential between the electrode i and the

Reference Electrode, and n is the number of electrodes used
in the acquiring structure. Even with the assumptions of
complete electrode coverage usually not met completely in
practice, the CAR provides EEG recording that is nearly
reference-free [13].

Two approaches were adopted to apply the steps of fea-
ture extraction and rule-based classification on the spatially
filtered signals. The first one uses the signal from all six
electrodes for the processing. It means that the peaks from
the six channels were extracted and used in the decision
tree. The second approach uses only the three occipital
channels O1, O2 and Oz (chosen empirically), which was
implemented to evaluate the system performance using less
electrodes. In both cases, the first 2 s of each trial were not
considered to estimate the correct classification rate, since
the user was not gazing any bar in this interval.

In both approaches the periodogram was determined for
the spatially filtered signal, split in intervals of 2 s with
overlapping segments of 1 s, which allows to determine one
class at each second. The rate of the spectral F-test was done
with a significance level of α = 0.05 and L = 32 neighbor
frequencies, which leads to a SFTcrit of F(2,64,0.05) =

3.1404. The decision tree was performed incrementally for
the signal, that is, at each second, new 256 samples were
processed and classified by the decision tree.

The results found for each volunteer in the first approach,
that is, using six electrodes for classification, are shown
in Table I. Note that even with a medium classification
rate (71% for Vol4) the ITR is high (40.3 bits/min). This
is because the analysis is performed incrementally and the
system updates the classification result at each second, so that
the BCI is able to take 60 decisions per minute. Although
the high values of hit rates (99% for Vol1), some volunteers,
such as Vol6, have not adapted to the system.

TABLE I
CLASSIFICATION RATE AND ITR FOR SIX VOLUNTEERS USING SIX EEG

CHANNELS.

Classification Rate ITR (bits/min)
Vol1 99% 114.2
Vol2 79% 55.5
Vol3 79% 55.5
Vol4 71% 40.3
Vol5 49% 11.5
Vol6 38% 3.6

Average 69% 46.8

The second approach allowed studying the influence of
the reduction of the number of electrodes, and the results are
presented in Table II. Although the number of electrodes was
reduced during the processing steps, just a slight performance
reduction can be observed. This indicates the possibility of
developing a SSVEP-BCI with quite few electrodes (three or
four).

In terms of comparison, in other works [4], [8], the classi-
fication method is generally based on founding a threshold to
detect the peaks. In [4], linear discriminants were used as the
classifier model, which correspond to calculate a threshold
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TABLE II
CLASSIFICATION RATE AND ITR FOR SIX VOLUNTEERS USING THE

THREE OCCIPITAL CHANNELS.

Classification Rate ITR (bits/min)
Vol1 99% 114.2
Vol2 74% 45.7
Vol3 77% 51.4
Vol4 72% 42.0
Vol5 41% 5.3
Vol6 33% 1.4

Average 66% 43.3

in one dimension. It has resulted in a classification rate of
90% and a ITR of 43 bits/min. In [8], a method to find the
best spatial filtering configuration was shown, which requires
some training. The detection rates, for stimulus frequencies
in the 30-45 Hz range, were characterized by values of the
area under the Region of Convergence from 0.8 to 1.

In this paper, a totally automatic SSVEP-BCI with hit rate
up to 99% and ITR up to 114.4 bits/min is shown. Moreover,
there is no need of settings, calibration, personalization,
adaptation, baseline acquiring or training step. This was
the same structure implemented in [3], [6] and [7] for low
stimulus frequencies. This work, actually, has proven that
it could be used also in high frequency range. It means
that using a statistical test is a robust way of detecting
evoked peaks. Also, a rule-based classifier, i.e., a decision
tree, is enough to discriminate the peaks extracted. Although
the trials were performed offline, the trials configuration
represents a good characterization of the influence from the
other stimuli, once the volunteers gazed on one stimulus
while the others were lit on. Moreover the SSVEP-BCI using
high stimulus frequencies is more appropriated to be used
in long time operation because gazing that stimuli is less
tiresome.

VI. CONCLUSIONS

The system presented in this work is very efficient in de-
tecting SSVEP in high frequencies range. The use of higher
stimulus frequencies leads to a more comfortable stimulation.
The system developed is totally automatic and no adjustment
is required. The parameter of the statistic test, L, is not
related to the time period of the EEG signal analyzed, but to
the number of frequency components analyzed, which leads
to a quite robust system. The best results are found using six
electrodes, but good results can be found using only three
occipital channels during the processing step. This automatic
system would be useful to implement an online SSVEP-BCI.
Such BCI would be applied to command a robot or even a
robotic wheelchair, for instance. Indeed, this last possibility
is the one we now working on.
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