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Abstract— With this concept we introduced the attempt of a
standardized interface called TiA to transmit raw biosignals.
TiA is able to deal with multirate and block-oriented data trans-
mission. Data is distinguished by different signal types (e.g.,
EEG, EOG, NIRS,. . . ), whereby those signals can be acquired
at the same time from different acquisition devices. TiA is built
as a client-server model. Multiple clients can connect to one
server. Information is exchanged via a control- and a separated
data connection. Control commands and meta information are
transmitted over the control connection. Raw biosignal data is
delivered using the data connection in a unidirectional way. For
this purpose a standardized handshaking protocol and raw data
packet have been developed. Thus, an abstraction layer between
hardware devices and data processing was evolved facilitating
standardization.

I. INTRODUCTION

Various brain-computer interface (BCI) systems have been
built since 1973 when the idea of a BCI was mentioned the
first time by Vidal [1]. All those BCIs have the similarity
to deal with brain signals, a small subset of biosignals.
To compare and summarize commonalities in BCI systems,
Mason and Birch presented a common BCI structure in
2003 [2], shown in Fig. 1. The BCI was divided into distinct
modules, each one with a specific responsibility inside the
BCI processing chain. Those modules are connected with
different interfaces, which can be seen as the key principle
for standardization processes for BCI systems.
Tackling the first interface between “Amplifier” and “Feature
Extractor”, as shown in Fig. 1, commonalities like acquisition
of various channels or a defined sampling rate can be found
in different BCI system like OpenVibe [3], BCI2000 [4], rts-
BCI [5], or xBCI [6]. Every one of those systems acquire data
and transmit it for further processing. But as no standardized
interface definition between acquisition and the first process-
ing module is available, partly incompatible systems are the
result. BCI systems dealing with other signal types than just
brain signals like EEG (electroencephalogram) or NIRS (near
infrared spectroscopy) are also mentioned in literature [7]–
[11]. Such systems, called hybrid BCIs (hBCI), deal with
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Fig. 1. Functional model from Mason and Birch (modified from [2]).

different types of user inputs to form a more flexible BCI by
also including assistive technology (joysticks, buttons,. . . ).
To deal with different kinds of signals in a standardized
way, some kind of abstraction is needed. Additionally the
type or manufacturer of a respective data acquisition source
should be completely irrelevant for the following processing
chain. Such a standardized abstraction layer would enhance
flexibility and autonomy concerning used hardware.
Therefore an attempt of a standardized interface for raw
biosignal transmission, especially for BCIs, called TiA (Tools
for BCI – Interface A) was developed. With this interface
it is possible to deal with different kinds of biosignals in a
common way. It is a first step to decouple the data acquisition
system from the BCI processing chain and provide ensured
exchangeability.

II. REQUIREMENT ANALYSIS AND DESIGN

Different BCI systems have already been built using pure
brain control as well as hybrid combinations. EEG [12], mag-
netoencephalogram (MEG) [13], the NIRS signal [14], or
the blood oxygen level dependent (BOLD) signal [15] have
already been utilized to control a BCI just using mentioned
brain signals. Developing hybrid BCI systems, the number of
potential kinds of possible signals further increases. Signals
like the electromyogram (EMG) [10] and the electrocardio-
gram (ECG) [16] have already been successfully combined
with EEG to control a hybrid BCI. But also other signals like
electrooculogram (EOG) or information delivered by various
assistive devices (e.g. buttons or joysticks) or sensors could
be used in combination with an arbitrary brain signal to form
an hBCI system.
TiA evolves an abstraction layer between data acquisition
and data processing. Therefore, a standardized possibility to
distinguish between different kinds of signals beyond this
abstraction is an important issue. For that purpose so-called
“Signal Types” were introduced, allocating every different
kind of signal a unique identifier.
When analyzing different kinds of signals transmitted be-
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tween data acquisition and data processing, various com-
monalities can be found. Signals are, or can be, divided into
channels with related channel names and a defined scaling.
Those channels can have a position or location and are
acquired with a defined sampling rate. Single samples can
be grouped together, forming blocks of samples.
Mason and Birch [2] showed a unidirectional transmission
(see Fig. 1) from data acquisition (amplifier) to the first
processing module (feature extraction). Using a client–server
architecture is one possibility to address such a principle.
In this case the data acquisition plays the server role and
processing modules are the respective clients. Applying the
client–server principle in this case easily facilitates the usage
of multiple and potentially distributed processing chains
(Mason and Birch merely show one processing chain in their
models).

A. Design Principles

Information transmitted via TiA can be distinguished into
two categories: (i) mutable and (ii) immutable information.
Therefore, the data distribution is also split into two parts,
initial meta information transmission to transmit immutable
information and a continuous data stream to transmit mu-
table data to the client. Control messages using a defined
handshaking protocol are used to transmit meta information.
Mutable data (e.g., recorded voltage from an EEG channel) is
delivered using a unidirectional binary data stream from the
server to the client. Using the client–server principle similar
or individual data streams can be established to multiple
clients, only depending on the transmitted meta information.
It is possible for an arbitrary number of clients to attach to
the server at runtime. The client–server principle used for
TiA is illustrated in more detail in Fig. 2.
A whitepaper concerning design and implementation of TiA
(e.g., signal type flags) is available for download at arXiv.org
[17].
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Fig. 2. TiA principle showing one server and two clients. An arbitrary
number of clients can connect to the server choosing TCP or UDP for raw
data transmission.

B. Software Design
A single data acquisition system, implementing the TiA

interface, acquires data from different hardware devices. To
set up a connection, HTTP-like (hyper text transfer protocol
[18]) control messages are sent using two TCP (transmission
control protocol [19]) connections. Messages sent over those
connections are used for handshaking between client and
server. Meta information can be optionally appended to this
control messages. For mutable raw data transmission, a
TCP or UDP (user datagram protocol [20]) connection can
be chosen during the handshaking process.
The handshaking process is handled with two separated
connections, whereby one connection is client–server
oriented and the other one has a server–client orientation.
The client–server connection is a mandatory requirement
in TiA, supporting the server–client connection is optional.
Incoming messages are always answered using the same
connection on which the message was received.

TiA Server TiA ClientTiA

incomming TCP connection outgoing TCP connection

1 2
load config, server start client start

3 request meta information from server

4send meta information

5 use TCP or UDP data transmission

6transmit server port

7
TCP: connect to assigned server port
UDP: listen to assigned port

8 start data transmission

9RAW data stream

10 stop data transmission

close connection to
respective client

close connection
to TiA server11 12

Fig. 3. TiA – client–server handshake. Steps 3–8 and 10 are done using the
client–server control connection. During step 9 information is transmitted
over the data connection; it represents the raw data stream from the server
to the client.

1) Handshaking Process: Fig. 3 illustrates the steps
between client–server communication. Information exchange
is represented using arrows. Every message is transmitted
in a standardized way using defined control messages and
data packets. During steps 1 and 2 the client and server
are started. In case of an error the startup is interrupted. In
step 3 the client requests meta information from the server,
the server responds with the meta information in step 4.
For raw data transmission the client can choose whether
to receive data via TCP or UDP. The desired raw data
transmission protocol is sent to the server during step 5.
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The server responds in step 6 with the respective port the
client has to connect to (in case of TCP) or to listen to (in
case of UDP). Subsequently in step 7 the client establishes
a connection to (TCP) or starts listening (UDP) for data
packets on the assigned port. To start data transmission, the
client sends a message to the server during step 8. Starting
in step 9, the server starts transmitting data packets to the
client (the data packet is the same for TCP and UDP). In
case of UDP, packets are broadcasted. The first connected
client requesting UDP starts the broadcast and the last client
disconnecting from the server stops the broadcast. If the
client does not want to receive any more messages, a stop
command is sent to the server during step 10. In case of
TCP no more packets are delivered using the respective data
connection. In case of UDP the broadcast is only stopped
if the respective client was the last one requesting UDP.
Otherwise UDP packets are further broadcasted. During
step 11 the respective client is removed from the servers
list of connected clients. Subsequently, in step 12, the client
closes both the data and control connections to the server.
This handshaking procedure is mandatory to establish a
connection. In case of an error during this handshaking
procedure no connection is created.

2) Data Transmission: Mutable raw data is transmitted
via TiA data packets using a binary data stream. Acquired
data is encapsulated within those data packets. An exemplary
data packet is visible in Fig. 4.
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Fig. 4. Graphical representation of a TiA data packet. EEG and EMG
content is shown as an example. EEG ch 1 (s 1) is an abbreviation for the
signal type EEG, the first channel and the first sample. The block size for
EEG is also one. For EMG an exemplary block size of four is used.

a) TiA Data Packet: The TiA data packet consists of
three parts: (i) a fixed header; (ii) a variable header; and
(iii) the raw data. By interpreting information stored in the
fixed and variable header it is possible to correctly parse
and read the whole data packet. The packet is equipped with
a timestamp, a packet number, and a unique identifier per
connection to facilitate proper timing and detect lost packets
using UDP data transmission. Every signal type inside the
data packet is identified with a unique flag. The number of

channels and the block size can vary from packet to packet,
but within TiA, a constant number of channels over time
is assumed. Within the data packet raw data is stored as a
32 bit binary single precision floating point number (IEEE
754-2008 [21]). As a distinction between different signal
types is possible within the data packet, data acquisition
of multiple signal types at the same time and transmission
within one data packet is possible. Different signal types
can have different sampling rates and different block sizes,
but within on signal type the sampling rate and the block
size must be the same. Furthermore a single hardware
device can acquire just one or also multiple signal types, as
far as prior requirements are fulfilled. Detailed information
concerning the data packet is available at arXiv.org [17].

b) Data Stream: A client has to perform the TiA hand-
shaking process before receiving any data packets and has to
choose either TCP or UDP for data transmission. Potential
lost packets in case of UDP are not re-sent. If guaranteed
data transmission is required, TCP has to be chosen. Using
TCP for data transmission, a separate TCP connection from
the client to the server is established and data packets are
sent via this connection. The TiA data transmission is also
restricted in some sense: for a single signal type only one
block size and one sampling rate is allowed. But different
signal types may have different sampling rates and block
sizes.

III. IMPLEMENTATION AND TESTING

A. Implementation

A library and a first prototype called “signal server”
using this TiA library, both written in C++, have
been implemented and are available for download
(http://bci.tugraz.at/downloads.html). The implementation is
cross platform (Windows and Linux). During implementation
a main focus was performance and stability. Up to now
various hardware devices like generic joysticks and
amplifiers from g.tec [Guger Technologies OG, Graz,
Austria] and Brain Products [Brain Products GmbH,
Gilching, Germany)] are supported by the signal server.
To use those devices for BCIs, different clients using
TiA have been written for Matlab [The MathWorks Inc.,
Natick, USA], Matlab Simulink, and BCI2000 [4]. Thus it
is possible to stream data into these systems using TiA.

B. Testing

Testing measurements were accomplished using common
personal computers (HP dc7700 workstation, Intel Core2Duo
6300@1.86 GHz, 4 GB Ram, Nvidia GeForce 9500 GT,
Western Digital WD1002FAEX) using Windows Xp 32 bit
and Debian unstable 64 bit.

1) Stability and Memory Consumption: The signal server
was tested with a TiA client, both running on the same
machine or on two different PCs connected via Ethernet.
Long-term tests, lasting at least 10 hours, were performed
under Linux (Debian unstable) and Windows XP to check
for stability problems. In Linux additional memory leak tests
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using valgrind [22] were conducted. The tested version of
the signal server and the TiA client showed no increasing
memory consumption in ten tests on both operating systems.
The required memory was constant also after a continuous
operation longer than ten hours. This was achieved in both
operating systems. No memory leak was detected by valgrind
under Linux when closing the server or the client. The
memory consumption of the server was always below 1ṀB,
the client required less than 15 MB. The higher memory
consumption of the client is caused by its receive buffer
for incoming data packets. This value has been increased in
comparison with the server to prevent the client from loosing
data packets in case of reading delays.

2) Processing Time: A low processing time during data
acquisition is essential. Acquired data has to be delivered
as fast as possible to the clients. The processing time was
measured from creation of a data packet (nearly the moment
when data is read out from the respective data acquisi-
tion driver) until it’s handover to the operating systems
networking library functions. The timestamp stored inside
the data packet was utilized to measure the delay. Packets
were created with 10 kHz and 128 channels to simulate a
high workload and sent using TCP over the loopback device
(a virtual local network interface). Statistical values were
computed over five minutes (resulting in 3 · 106 packets),
the computer was idle except the signal server and client
processes. According to the results, shown in Tab. I, the
maximum packet rate for the signal server would be roughly
40 kHz (with a mean processing time of 25 µs per data
packet). Using a higher sampling rate, new data would be
available before older one was completely processed.

TABLE I
PROCESSING TIME OF A SINGLE TIA DATA PACKET.

mean std median min max
Debian 19 µs ±3 µs 16 µs 7 µs 2817 µs
Windows 23 µs ±18 µs 18 µs 9 µs 3741 µs

IV. DISCUSSION

We have shown that it is possible to introduce an attempt
of a standardized layer between the data acquisition module
(Amplifier) and the first data processing module (Feature
Extractor) into the functional model described by Mason and
Birch [2]. A library and a data acquisition software have been
written for this purpose and have been successfully integrated
into different programs used for BCI purposes nowadays
(BCI2000, Matlab). Performance and stability of the current
implementation has been analyzed. Furthermore, using TiA,
it is a simple process to add additional signal types.
By using TiA it becomes possible to decouple a BCI system
from the used data acquisition hardware and make one step
towards Masons standardized BCI model.
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