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Abstract—In non-invasive brain-computer interface (BCI),
the analysis of event-related potentials (ERP) has typically
focused on averaged trials, a current trend is to analyze single-
trial evoked response individually with new approaches in pat-
tern recognition and signal processing. Such single trial detec-
tion requires a robust response that can be detected in a variety
task conditions. Here, we investigated the influence of target
probability, a key factor known to influence the amplitude of the
evoked response, on single trial target classification in a difficult
rapid serial visual presentation (RSVP) task. Our classification
approach for detecting target vs. non target responses, considers
spatial filters obtained through the maximization of the signal to
signal-plus-noise ratio, and then uses the resulting information
as inputs to a Bayesian discriminant analysis. The method is
evaluated across eight healthy subjects, on four probability
conditions (P=0.05, 0.10, 0.25, 0.50). We show that the target
probability has a statistically significant effect on both the
behavioral performance and the target detection. The best
mean area under the ROC curve is achieved with P=0.10,
AUC=0.82. These results suggest that optimal performance of
ERP detection in RSVP tasks is critically dependent on target
probability.

I. INTRODUCTION

The research directions in non-invasive brain-computer
interface (BCI) depends on the target user and therefore the
application. The target user directly drives the BCI perfor-
mance expectation, from a working system to a system that
reaches or outperforms other interfaces. Although BCI are
mainly designed for people suffering from severe disabilities,
a current trend is to consider BCI for healthy users in
applications like target detection. For these users and due
to ethical issues, BCI remain non-invasive. Such BCI can
be based on the analysis of electrical signals recorded at the
surface of the scalp (electroencephalography (EEG)).

The detection of event-related potentials, e.g. the P300,
can be used for creating a BCI, e.g. the P300 speller [1]. The
P300 is a positive deflection in the EEG that occurs about
300ms after a task-relevant target has been detected. A long
line of studies has demonstrated that the P300 amplitude
is affected by a variety of task factors, including target
probability [2]. While these studies have shown the effects
of target probability on the amplitude of the P300 ERP
component, it remains unclear whether single-trial pattern
classification is affected in a corresponding manner.
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The purpose of the present work is to investigate the
effect of target probability on single trial detection in a
problem where targets are difficult to detect, i.e. the behav-
ioral performance is expected lower than for easier tasks.
Understanding the influence of target probability on single-
trial detection in difficult tasks will provide key insights into
BCI designs that will be robust in a variety of task contexts.
While the search of a well-identifiable target is already a
challenge, the search of noisy targets increases the difficulty
of the detection, both within the EEG signal, but also for the
behavioral performance. This parameter is also relevant for
other real applications as the target probability may vary over
time, e.g. weapons in luggage or tumors in mammograms.

We propose in this paper to evaluate a difficult visual target
detection task using a rapid serial visual presentation (RSVP)
task. An RSVP paradigm is a useful tool for researchers
working on visual attention, allowing researchers studying
the temporal characteristics of neural information process-
ing [3]. In this paradigm, each image replaces the previous
one at the same spatial location. In [4], an RSVP system
has been efficiently used for face recognition. Single trial
detection of ERP has been addressed for target detection
by using RSVP, e.g. the search of targets in satellite im-
ages [5], [6], [7]. Target detection has also been the subject
of a recent competition in an international machine learning
workshop [8]. In this competition, the area under the ROC
curve (AUC) was about 0.82 for the best participants. We
focus here on the impact of target probability on the overall
detection.

II. EXPERIMENTAL PROTOCOL
A. Paradigm

Images of faces and cars were presented as stimuli to the
observers who performed the behavioral task of identifying
the correct label of the image (face/car) and their neural
signals were recorded via electroencephalography. Figure 1
shows examples of the visual stimuli with and without noise
(participants only saw the versions with noise). These images
depict the difficulty of the task. Each image was presented for
500 ms, with no blank interval between subsequent images,
resulting in a presentation rate of 2 Hz. In each session,
target probability, i.e. face probability, was either 0.05, 0.10,
0.25, or 0.50 and remained constant throughout the session.
Target images were set by block of two minutes keeping a
relative constant target probability over time. Each subject
had to complete four sessions (a session at each probability
condition). Each session contained 12,000 trials. The order
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Fig. 1. Samples of visual targets (faces, top) and non-targets (cars, bottom)
with their corresponding model.

of the session was counterbalanced across subjects. In the
following sections, we denote by P(0.05), P(0.1), P(0.25)
and P(0.5) the conditions with the target probability 0.05,
0.10, 0.25, and 0.50, respectively.

Eight healthy subjects participated to the experiment
(mean= 23.5, sd=8.38, 3 females). They were instructed to
respond to the presence of a face as quickly and accurately
as possible by hitting the enter key on a standard keyboard.

B. Signal acquisition

The EEG signal was recorded from 32 Ag/ AgCl sintered
electrodes mounted in an elastic cap and placed according to
the International 10/20 System. The horizontal and vertical
electro-oculograms (EOG) were recorded from electrodes
placed 1 cm lateral to the external canthi (left and right) and
above and below each eye, respectively. The data were sam-
pled at 512 Hz and referenced offline to the signal recorded
from the mastoids. Trials containing ocular artifacts (blinks
and eye movements) detected by EOG amplitudes exceeding
+75uV were excluded from both the ERP analysis and the
behavioral performance evaluation.

C. Signal processing

Before the classification step, a set of features were deter-
mined for what best discriminates the ERP to targets from the
ERP to non targets. The experimental protocol suggests the
presence of a P300 in the ERP of each target. Therefore, we
can estimate the location of an ERP between the beginning
of the visual stimulus and less than 1s after its beginning.
The sampling rate is 512Hz and the signal is first bandpassed
filtered (Butterworth filter of order 4) with cutoff frequencies
at 1 and 10.66Hz. Then the signal is downsampled to obtain
a signal at a sampling rate equivalent to 32Hz. This new
sampling rate corresponds to the sampling frequency used
by the winning team of the MLSP competition 2010 [9].
For the following steps, we used the observed signal over
625ms after the start of a visual stimulus. As the sampling
frequency is now 32Hz, it corresponds to 20 sampling points.

The next step consisted of enhancing the relevant signal
by using spatial filters. Let us denote by U € R™s*Ns | the
spatial filters, where N, is the total number of sensors and
Ny is the number of spatial filters. The signal after spatial
filtering is defined by Xy;; = XU where X € RV *Ns jg
the recorded signal, IV; is the number of sampling points.

For spatial dimension reduction, we consider that the
expected ERP is stable over time. Although, the latency and
amplitude of the P300 may vary over time for a given task,
we assume a spatially stationary waveform of the ERP. With
this hypothesis we can consider a single set of spatial filters
that can be applied all over the signal. We consider here the
xDAWN algorithm [10], [11]. This method has been already
successfully applied in BCI for P300 detection in the P300
speller paradigm. An algebraic model of the recorded signals
X is composed of three terms: the responses on targets
(D1 A7), a response common to all stimuli, i.e. targets and
non-targets confound (D2 A3) and the residual noise (H)

X = DA+ DAy + H. (1)

where D; and D, are two real Toeplitz matrices of size
N; x Ny and Ny x Ny respectively. D; has its first column
elements set to zero except for those that correspond to a
target onset, which are represented with a value equal to
one. For D, its first column elements are set to zero except
for those that correspond to stimuli onset. /N; and N, are the
number of sampling points representing the target (the P300
response) and superimposed evoked potentials, respectively.
H is a real matrix of size IV; x Ng.

The goal of applying spatial filters U € RN=*Ns is to
enhance the signal to signal-plus-noise ratio (SSNR) of the
enhanced P300 responses (D1 A;U), where N is the number
of spatial filters

XU = DiAU+ Dy AU + HU. 2)
We define the SSNR in relation to the spatial filters by:

Tr(UTATDT D, A,U)
SSNR(U) = Tr(UTXTXU) ©)

where A, corresponds to the least mean square estimation
of Ap :

; A _

A = | 4] = (Du DT ID1s D2 1 Do
2

where [D1; Do) is a matrix of size Ny x (N1 + N3) obtained

by concatenation of D; and Ds.

Spatial filters are obtained through the Rayleigh quotient by

maximizing the SSNR [11]:

U = argmax y; SSNR(U). (5)

For the classifier input, we used four spatial filters (/Ny =
4). Therefore, the number of features that are given as input
to the classifier is 80. For each input vector, the signals were
normalized so that they had a zero mean and a standard
deviation equal to one for each spatial component. Finally,
the input vector is obtained by the concatenation of the Ny
time-course signals across spatial filters. The Bayesian linear
discriminant analysis (BLDA) classifier is considered for the
detection of the P300 wave [12]. This classifier is relatively
robust to noise in the training data as regularization is used
during learning [13]. As the number of samples between
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targets and non-targets are not equal for conditions P(0.05),
P(0.1) and P(0.25), we rebalance the data set artificially.
For each classifier, we upsample the data set by replicating
cases from the minority class in order to have an equal
number of samples for each class.

III. RESULTS

The performance of every subject is evaluated through
the behavioral performance and the EEG signal classification
results. For the evaluation of the classifier, we provide the
results obtained after a K-fold cross-validation where K = 5.
The classifier evaluation is based on the AUC as ROC curves
are insensitive to changes in class distribution [14].

A. Behavioral performance

A response was considered as correct if the target was
presented to the user less than 800ms before the user pressed
a button. If the subject did not press a button within 800ms
after the presentation of a target, it was considered as a
mistake. It was also a mistake if the subject pressed a button
when there was not a target on the screen.

The behavioral performance of each subject and for each
condition is presented in Figure 2. These figures highlight
first the difficulty of the task as no subject was able to
complete the task with perfect accuracy. The mean accuracy
was 78.7,76.4,77.0 and 71.5% for P(0.05), P(0.1), P(0.25)
and P(0.5), respectively. The best accuracy was achieved
by Subject 1 at P(0.05) with an accuracy of 97.8%. A
pairwise two-tailed t-test comparison indicates that there is
no statistically significant difference across conditions for
the accuracy. In Figure 2, the AUC of the behavioral per-
formance is estimated as the normal cumulative distribution
function of d’/v/2 where d’ is the sensitivity index d’ =
Z(hit rate) — Z(false alarm rate) and Z(p), p € [0, 1],
is the inverse of the cumulative Gaussian distribution.

B. Single trial detection

Figure 3 presents the ROC curves for every condition and
every subject. In these curves the classifier and the spatial
filters were evaluated each time on the same condition.
The mean AUC across subjects is 0.768, 0.821, 0.815 and
0.789 for conditions P(0.05), P(0.1), P(0.25) and P(0.5),
respectively. The standard deviation of the AUC is 0.074,
0.063, 0.068, and 0.070 for conditions P(0.05), P(0.1),
P(0.25) and P(0.5), respectively. The best performance is
achieved by Subject 2 with the condition P(0.1), where the
AUC reaches 0.922.

A pairwise two tailed t-test reveals that P(0.1) provides
better performance than P(0.05) (t(;y = —3.77, p < 0.01).
P(0.1) also provides better performance than P(0.5) (t(7) =
2.50, p < 0.05). A pairwise two-tailed t-test indicates no dif-
ference between P(0.05) and P(0.25), P(0.05) and P(0.5),
P(0.1) and P(0.25) or between P(0.25) and P(0.5). The
best probabilities for target detection are therefore 0.10 and
0.25.

The spatial distribution of the ERP present in 625ms after
a visual stimulus corresponding to a target is depicted for
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Fig. 2. Behavioral performance for each subject and each condition. On
each box, the central mark is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data points
not considered outliers, and outliers are plotted individually.

every condition in Figure 4. The spatial distribution varies
across conditions, with a higher activity in the occipital area
than the parietal area for high target probabilities.

IV. DISCUSSION AND CONCLUSION

Target probability in an RSVP task has an influence
on both behavioral and single trial detection performance.
In ERP measurements, it is well known that the target
probability has a high importance for P300 measures. Indeed,
it is assumed that the longer the time between consecutive
target occurrences within the typical oddball task, the larger
is P300 amplitude and the shorter is its peak latency [15].
Single trial ERP detection confirms these findings as the
average ERP detection is lower with P=0.5 than for P=0.25.
However, with a low probability P=0.05, the ERP detection
is not higher than with P=0.10 or P=0.25. It shows that there
may exist an optimal target probability, which would allow
the best target detection. It is therefore useless to decrease

6383



— vf ’: =
= ) =
0.8 T 08 S P 08 0.8
L, / L
Vs e oy I

0.6 /s 06t /77 0.6/ 0.6
x ;7 |——s1-aAuc=o0s3s8 o« V) ——S1-AUC=0871 x ——S1-AUC=0863 o« ——S1-AUC=0873
= | / ——— 82 - AUC = 0.856 = et ——— 82 - AUC =0.887 = ——— 82 - AUC =0.922 = ———82-AUC=0.871
0.4 “ i, ‘ ——S3-AUC=0.775 0.4 l// ——S83-AUC =0.831 0.4 ——S3-AUC =0.769 0.4 ——S3-AUC =0.824
/1 S4 - AUC = 0.624 ! S4 - AUC =0.723 S4 - AUC = 0.755 S4 - AUC =0.674
’ - - —85-AUC =0.766 ,I/ - - —S85-AUC =0.747 - - —-85-AUC=0.784 - - —-S5-AUC=0.728
ooll’ /|- - -ss-Auc=0172 P -~ -S6-AUC=0.88 02 ~ - ~S6-AUC =0.864 ozl ~ - -6 - AUC =0.766
2y - - -S7-AUC = 0.694 2| - - -S7-AUC=0.768 - - - -S7-AUC=0.785 : - - -S7-AUC=0.758
! S8 - AUC =0.758 S8 - AUC =0.811 S8 - AUC =0.718 S8 - AUC =0.752

Mean - AUC =0.768 Mean - AUC = 0.821 Mean - AUC =0.815 Mean - AUC =0.789
0 0 0 0
0 02 04 06 08 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
FPR FPR FPR FPR
(a) P(0.05) (b) P(0.1) (c) P(0.25) (d) P(0.5)
Fig. 3. ROC curves for each condition.
(a) P(0.05) (b) P(0.1) (c) P(0.25) (d) P(0.5)
Fig. 4. Average spatial distribution across subjects for each condition obtained through spatial filters analysis based on the xXDAWN algorithm [11].

Blue/red colors denote positive/negative values.

the target probability to expect better performance as the
attention of the subject may be impaired by a too low target
probability. The different neural processes in relation to the
target probability are confirmed by the analysis of the spatial
distribution of the ERP. It suggests that the ERP to detect
varies across target probabilities.

For BClIs that are used for target detection, the target prob-
ability is a critical parameter for determining the performance
of an RSVP based application where the distribution of the
target can be unpredictable. The differences observed at the
spatial distribution of the ERP, at the behavioral performance
and the classification level indicates that the ideal system
should incorporate this information over time. Identifying
the instantaneous distribution of the target probability may
help finding or selecting the best spatial filters and the best
classifiers to use anytime. Other parameters in the RSVP
task could be dynamically changed in relation to the current
target probability. With a high/low probability, the inter-
stimulus interval could be reduced/increased. Further works
will deal with the automatic selection of classifiers and RSVP
parameters by determining the current target probability of
the targets.
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